
AAsclepius: Monitoring, Diagnosing, and Detouring
at the Internet Peering Edge

Kaicheng Yang†,§, Yuanpeng Li†,§, Sheng Long†,¶, Tong Yang†,§, Ruijie Miao†, Yikai Zhao†,

Chaoyang Ji¶, Penghui Mi¶, Guodong Yang¶, Qiong Xie¶, Hao Wang¶, Yinhua Wang¶, Bo Deng¶,

Zhiqiang Liao¶, Chengqiang Huang¶, Yongqiang Yang¶, Xiang Huang¶, Wei Sun¶, Xiaoping Zhu¶

†National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University

§Peng Cheng Laboratory, Shenzhen, China ¶Huawei Cloud Computing Technologies Co., Ltd., China

Abstract
1 Network faults occur frequently in the Internet. From the

perspective of cloud service providers, network faults can be

classified into three categories: cloud faults, client faults, and

middle faults. This paper mainly focuses on middle faults. To

minimize the harm of middle faults, we build a fully automatic

system in Huawei Cloud, namely AAsclepius, which consists

of a monitoring subsystem, a diagnosing subsystem, and a

detouring subsystem. Through the collaboration of the three

subsystems, AAsclepius monitors network faults, diagnoses

network faults, and detours the traffic to circumvent middle

faults at the Internet peering edge. The key innovation of AAs-

clepius is to identify the fault direction with a novel technique,

namely PathDebugging. AAsclepius has been running for two

years stable, protecting Huawei Cloud from major accidents

in 2021 and 2022. Our evaluation on three major points of

presence in December 2021 shows that AAsclepius can effi-

ciently and safely detour the traffic to circumvent outbound

faults within a few minutes.

1 Introduction
Network faults, including congestion, link failures, BGP mis-

configurations, etc., occur frequently in the Internet [1–8].

Obviously, network faults could degrade the network per-

formance, and even lead to outages [9, 10], threatening the

connectivity of the Internet. As a cloud service provider (CSP)

which serves users at the Internet peering edge, the quality of

service (QoS) for users is significantly harmed by the frequent

network faults.

As pointed by BlameIt [11], from the perspective of CSPs,

network faults can be classified into three categories based on

where they occur (see Figure 1): 1) cloud faults which occur

in the cloud network (cloud AS 2); 2) client faults which oc-

cur in the client network (client AS); 3) middle faults which

1Co-primary authors: Kaicheng Yang and Yuanpeng Li. Corresponding

author: Tong Yang (yangtongemail@gmail.com).
2AS refers to autonomous system, which is a very large network or group

of networks with a single routing policy.

PoP i

PoP i+1

Private
Backbone

C
AS j

C
AS j'

CloudMiddleClient

ControllableUncontrollable

Figure 1: Three categories of network faults. "C" refers to

a client in the client AS, and "×××" refers to a middle fault.

When a middle fault occurs in the red path, we can detour

the traffic to egress at PoPi+1, so as to route the traffic along

the green path to circumvent the fault.

occur in the middle network (all AS’es between the cloud AS

and the client AS). First, the cloud network is fully controlled

by CSPs. We have already deployed a battle-tested system

in Huawei Cloud to heal cloud faults, and this paper does

not focus on cloud faults. Second, the client network is nei-

ther controlled by nor directly connected to CSPs. Therefore,

when client faults occur, what we can do is to request the

corresponding Internet service providers (ISPs) [11] for fault

healing. Third, the middle network is not controlled by but di-

rectly connected to CSPs. Same as other CSPs, Huawei Cloud

is connected to the middle network through dozens of points

of presence3 (PoPs). All PoPs and datacenters in Huawei

Cloud are interconnected by a private backbone. Leveraging

the private backbone, the traffic between clients and Huawei

Cloud can go through different PoPs. This implies that we can

choose different middle paths (paths in the middle network)

by choosing different PoPs, so as to handle middle faults. In

3Point of presence is the point where Huawei Cloud accesses the Internet,

see more details in Section 2.1.

summary, this paper focuses on middle faults, and identifies

client faults as well.

The design goal of this paper is to design a fully automatic

system to minimize the harm of middle faults. The system

should have three main functions: fault monitoring, fault di-

agnosis, and traffic detouring. First, the system should persis-

tently monitor the middle and client networks in a lightweight

manner to detect and report faults. Second, the system should

accurately diagnose the reported faults at fine granularity.

Third, for a middle fault, the system should efficiently and

safely detour the traffic to a healthy path, and detour the traffic

back immediately when the fault disappears.

Towards the design goal, the most important and challeng-

ing issue is to identify the fault direction, since no existing

works handle this problem. Suppose we find a middle fault

between a PoPi and a client AS j. If a fault occurs in the

path from PoPi to AS j, we define the direction of this fault

as outbound direction, and similarly we define inbound di-

rection. In this case, fortunately, we have many PoPs, and

thus outbound faults can be quickly circumvented: detouring

the traffic through another PoPi+1 to the client (see Figure

1). This action is quick because it only needs to update the

routing table of PoPi. If a fault occurs in the inbound direc-

tion from AS j to PoPi, unfortunately available solutions to

change the traffic path need to change the routing tables of all

routers in the middle network, which is obviously slow. The

above observations pose great importance on identifying the
fault direction. Further, it is challenging to identify the fault

direction. On the one hand, the middle network where faults

occur is completely out of our control. On the other hand, our

monitoring results do not include direction information.

Researchers and engineers have proposed various solutions

for network faults at Internet scale [1, 11–24]. Among them,

BlameIt [11], Edge Fabric [12], Espresso [13], Entact [14],

and CPR [15] are most related to our application scenarios.

However, as shown in Table 1, these works only have two of

the three main functions, and none of them identifies the fault

direction. BlameIt monitors and diagnoses network faults

in the cloud environment. However, it does not support traf-

fic detouring and fault direction identification. Edge Fabric,

Espresso, Entact, and CPR support traffic detouring, but they

do not diagnose network faults. In summary, all existing works

do not meet our design goal.

Aiming at the design goal, we design a system, namely

AAsclepius (AutoAsclepius). AAsclepius consists of three

subsystems: a monitoring subsystem, a diagnosing subsystem,

and a detouring subsystem. Each subsystem is responsible

for implementing a main function. Below we only show how

the diagnosing subsystem addresses the above challenge of

identifying fault direction.

Diagnosing subsystem: AAsclepius uses a decision tree with

intuitive design to achieve the accuracy and fine granular-
ity of diagnosis. Our experienced experts have spent a long

time configuring the thresholds (§ 5) used in the decision tree.

These thresholds have proven to work excellently after two

years of validation. Our key innovation is to propose a tech-

nique, namely PathDebugging, to address the most important

and challenging issue, i.e., identifying the fault direction. For

a middle fault between a PoPi and a client AS j, the idea of

PathDebugging is to replace the path from AS j to PoPi with a

zero-fault path. In spite of the simple idea, the implementation

procedure is rather complicated, and the details are provided

in Section 5.3.

To date, AAsclepius has been running for two years, keep-

ing Huawei Cloud free of major accidents. In December 2021,

we conducted an evaluation on three major PoPs. The results

show that for all outbound faults, AAsclepius can efficiently

and safely detour the traffic to circumvent them within a few

minutes.

2 Settings
2.1 Cloud Infrastructure

Private
Backbone BRs …

DRs …

PRs …

…

PoP

DC DC DC

Transit PNI IXP

PRs…

BRs…

DRs…

PoP

DC DC DC

Transit PNI IXP

… MSesMSes

Figure 2: A PoP houses multiple peering routers (PRs) to

access the Internet, backbone routers (BRs) to access the

private backbone, and datacenter routers (DRs) to access

datacenters. Each peering router is connected to a moni-

toring server (MS) cluster (currently we only deploy one

server per PR) used for monitoring QoS (§ 4.2).

In order to serve approximately one billion geo-distributed

users, Huawei has deployed a cloud consisting of dozens of

PoPs and datacenters globally, as well as a private backbone

that interconnects all PoPs and datacenters. To access the

Internet, as shown in Figure 2, each PoP houses multiple peer-

ing routers (PRs) as edge routers, exchanging BGP routes and

traffic with transit providers, private network interconnects

(PNIs), and Internet exchange points (IXPs) outside the PoP.

The interconnectivity between all PoPs and datacenters pro-

vided by the private backbone greatly improves the flexibility

of traffic detouring. Traffic from any datacenter is first routed

to the backbone routers (BRs) via datacenter routers (DRs).

Through the private backbone, the traffic can then be routed

to egress at any PoP. Similarly, the inbound traffic can also

ingress at any PoP. Such flexibility of traffic detouring is the

basis of AAsclepius (§ 6).

To serve users, each PoP announces a distinct set of IP pre-

fixes as its dominating prefixes. Obviously, the PoP at which

the inbound traffic will be routed to ingress is only determined

Desired functions AAsclepius BlameIt [11] EdgeFabric [12] Espresso [13] Entact [14] CPR [15]

Fault monitoring � � � � � �
Fault diagnosis � � × × × ×

Direction identification � × × × × ×
Traffic detouring � × � � � �

Table 1: Comparison with prior solutions.

by its IP destination address. Unfortunately, if a PoP fails to

announce its dominating prefixes, the inbound traffic with

IP destination address in those prefixes will not be routed to

Huawei Cloud. To achieve fault resilience, each PoP addi-

tionally announces the dominating prefixes of the other PoPs

with multiple duplicate AS’es prepended to their AS_path4

(e.g., 12345, 12345, 12345). In this configuration, the traffic

is normally routed as before. If a PoP fails to announce its

dominating prefixes, after BGP converges, the traffic that orig-

inally ingresses at that PoP will be routed to ingress at another

PoP. Therefore, the availability of Huawei Cloud service is

guaranteed as long as one PoP remains operational.

We have built a traffic monitoring system in Huawei Cloud,

passively counting the sizes of flows entering or exiting

Huawei Cloud at <Source IP, Destination IP> granularity for

billing using programmable switches. This system not only

helps AAsclepius with fault monitoring as it can determine

the AS’es and IP /24 prefixes which contain clients of Huawei

Cloud, but also helps AAsclepius with traffic detouring as it

can provide visibility to the traffic volume between any PoP

and AS. While it is cost-efficient to passively monitor state-

less traffic volume, it is too expensive to maintain per-flow

state for a large cloud to monitor network faults, and therefore

AAsclepius still uses active probing.

2.2 Domestic Network Infrastructure
China’s network is mainly controlled by three top-tier transit-

providers. To serve geo-distributed users, each top-tier transit

provider builds its own large-scale backbone network with

sufficient intra-bandwidth interconnecting with all its client

networks. By comparison, the inter-bandwidth across differ-

ent transit providers is usually limited. Such infrastructure

guarantees that from a PoP’s perspective, the IPs in the same

AS share similar middle paths. It also motivates AAsclepius’

design (further shown in § 6): for traffic suffering from net-

work faults, AAsclepius detours it across different PoPs within

the same transit-provider for better performance, instead of

detouring it across different transit-providers in the same PoP.

3 AAsclepius Overview
Currently, because most traffic of Huawei Cloud exits from

PoPs deployed in our country, we have deployed AAsclepius

on a large scale in our domestic infrastructure. As mentioned

above, AAsclepius has three subsystems: a monitoring sub-

system, a diagnosing subsystem, and a detouring subsystem.

4The BGP AS path attribute sequentially lists the AS numbers comprising

the path to the destination.

Below we briefly present the modules and workflow of these

subsystems (see Figure 3). Because most of Huawei Cloud

traffic is still IPv4 traffic, AAsclepius targets at only IPv4

traffic currently. The terminologies frequently used in this

paper are shown in Table 2.

Table 2: Terminologies frequently used in this paper.

Terminology Meaning
Active IP

address

An IP address which will respond to ICMP

probes. (§ 4.1)

IP*
A representative IP address in a prefix for prob-

ing. (§ 4.1)

Victim-AS
An AS which is identified as suffering from

faults. (§ 4.3)

Fake fault
A network anomaly that causes a healthy-AS to

be identified as a victim-AS. (§ 5.1)

Backup PoP PoPi+1 is the backup PoP of PoPi. (§ 5.3)

Victim traffic The traffic that is suffering from faults. (§ 6)

Active IP
Collector

BGP
Injector

M
id

dl
e

Monitoring

Diagnosing

Detouring

QoS
Monitor

Fault
Debugger

Fake Fault
Filter

Fault
Reporter

Detouring
Controller

Fault
Classifier

C
lie

nt

Figure 3: The workflow of AAsclepius.

Monitoring subsystem (Figure 3 top). This subsystem con-

sists of three modules: an active IP collector, a QoS monitor,

and a fault reporter. The QoS monitor and the fault reporter

are deployed on a per-PoP basis.

1 The active IP collector monitors all IP /24 prefixes in the

AS’es which contain clients of Huawei Cloud, and collects

all active IP addresses.

2 The active IP collector selects representative IP addresses

for each IP /24 prefix and informs the QoS monitor.
3 The QoS monitor in each PoP receives representative

IP addresses, and runs QoS agents to send ICMP probes to

representative IP addresses in order to measure their packet

loss rates.

4 The QoS monitor aggregates packet loss rates at AS-

granularity, and passes them to the fault reporter.

5 The fault reporter in each PoP receives the aggregated

packet loss data from the QoS monitor in the same PoP, then

identifies and reports victim-AS’es to the diagnosing subsys-

tem.

Diagnosing subsystem (Figure 3 middle). This subsystem

consists of three modules: a fake fault filter, a fault classifier,

and a fault debugger. The fake fault filter is deployed on a

per-PoP basis.

6 The fake fault filter receives reported victim-AS’es from

the fault reporter in the same PoP, identifies and filters fake

faults, and outputs the other faults to the fault classifier.

7 The fault classifier receives the faults from the fake fault

filter in many PoPs, classifies the faults into three categories,

and passes middle faults to the fault debugger.

8 The fault debugger receives middle faults from the fault

classifier, and runs debugging agents to monitor a second path

for each middle fault.

9 The fault debugger then compares the monitored packet

loss rates of QoS agents and debugging agents to identify the

direction for each middle fault.

Detouring subsystem (Figure 3 bottom). The detouring

subsystem consists of two modules: a detouring controller
and a BGP injector. The BGP injector is deployed on a per-

PoP basis.

10 The detouring controller receives middle faults from the

fault debugger, generates detouring strategy for each middle

fault, and outputs the strategy to the BGP injector.

11 The BGP injector receives detouring strategy from the

detouring controller, generates corresponding BGP routes,

and announces them to PRs or DRs to detour the victim traffic.

4 Monitoring Network Faults
The monitoring subsystem consists of the active IP collector

(§ 4.1), the QoS monitor (§ 4.2), and the fault reporter (§ 4.3).

Each module will be introduced in one subsection.

4.1 Collector: Selecting Representative IPs
The first module in the monitoring subsystem is the active

IP collector (collector for short). The collector, deployed in

a VM in Huawei Cloud, is used to collect and select active

IP addresses. It proceeds in two steps. 1) For only IP /24 pre-

fixes in the AS’es which contain clients of Huawei Cloud, we

decide to actively send ICMP probes to IP addresses in them,

and regard the monitored performance as the QoS for users

in this prefix. To guarantee the accuracy of active monitoring,

we need to select active IP addresses as targets for probing.

Therefore, the first step is to collect active IP addresses from

the AS’es which contain clients of Huawei Cloud. 2) Consid-

ering that the active IP addresses in each IP /24 prefix share

similar middle paths and client paths5, it is of no value to

monitor all of them. To achieve lightweight monitoring, we

need to further reduce the overhead by selecting representa-

tive IP addresses (IP*s for short) in each prefix for probing.

5Client paths refer to the paths in the client AS.

Therefore, the second step is to select IP*s in each IP /24 pre-

fix, and then passes them to the second module, i.e., the QoS

monitor. Below, we describe the two steps of the collector in

detail.

The first step of the collector proceeds as follows. The

collector maintains health points as the indicator of activeness

for each IP address, and only scans IP /24 prefixes in the

AS’es which contain clients of Huawei Cloud by sending

ICMP probes to each IP address in them periodically. In each

round of scanning, if an IP address responds to the ICMP

probes, its health points will increase; otherwise, its health

points will decrease. The health points will decay over time,

so as to indicate recent health status. After each round of

scanning, the collector selects the IP addresses whose health

points exceed a predefined threshold as active IP addresses.

The second step of the collector proceeds as follows. After

each round of scanning, for each IP prefix, the collector sorts

the active IP addresses in it based on the health points from

the highest to the lowest. The IP addresses that usually belong

to gateways (e.g., .1, .254) will be given bonus health points

before sorting. Then, for each IP /24 prefix, the collector

selects the top-k active IP addresses in it as IP*s, and passes

them to the QoS monitor. By default, we set k to 5. For those

prefixes that contain clients of Huawei Cloud, we set a larger

k to better reflect the QoS. Note that the information of the

AS’es and IP /24 prefixes containing clients of Huawei Cloud

is provided by the traffic monitoring system built in Huawei

Cloud (§ 2.1).

4.2 Monitor: Monitoring QoS
The second module in the monitoring subsystem is the QoS

monitor (monitor for short). The monitor is used to monitor

the QoS for users in different AS’es. It is deployed based on

the following considerations. 1) As Huawei Cloud can serve

users from any PoP, we need to monitor the QoS by moni-

toring the performance of IP*s from every PoP. 2) To avoid

the disturbance of cloud faults and traffic detouring (§ 6),

we should start monitoring as close to the PR as possible. 3)

Considering that the cloud traffic can egress at any PR, we

should monitor all PRs to achieve full coverage of monitor-

ing, i.e., send probes to each IP* through all PRs. Therefore,

AAsclepius deploys the monitor on a per-PoP basis as fol-

lows. As shown in Figure 2, for each PR, AAsclepius deploys

a server directly connected to it, namely monitoring server.

On each monitoring server, the monitor runs a QoS agent to

send ICMP probes, which will egress at the PR connected to

the monitoring server, so as to achieve full coverage. This

deployment can easily scale out from a monitoring server to

a cluster consisting of multiple monitoring servers, so as to

improve the capability of the monitor.

The monitor proceeds in two steps. First, the monitor mon-

itors the performance of each IP* received from the active IP

collector. Specifically, every minute, the monitor executes

a round of monitoring: for each IP*, each QoS agent sends

ICMP probes to it, and computes its average packet loss rate

among all QoS agents, so as to achieve full coverage. We call

this process QoS monitoring.

Second, the monitor aggregates the performance of IP*s at

AS-granularity, and then passes the aggregated performance

data to the third module, i.e., the fault reporter. Specifically,

after each round of monitoring, for each AS, the monitor com-

putes the average packet loss rate of all IP*s in it as its packet

loss rate. The reason behind is as follows. It is expected that

we can monitor the QoS in every IP /24 prefix to achieve

fault monitoring at prefix-granularity, but not all IP /24 pre-

fixes contain active IP address. The network infrastructure in

our country can ensure that the IP*s in the same AS share

similar middle paths, and thus share similar middle faults

(discussed in Section 2.2). Therefore, monitoring the QoS

at AS-granularity will not degrade the sensitivity to middle

faults. In our deployment, we find the above attribute also

applies to the network of every ISP in every province. There-

fore, we call the network of every ISP in every province a

pseudo AS, and aggregate the performance of IP*s at pseudo-

AS-granularity to ease maintenance. In the rest of this paper,
we always use AS to refer to pseudo AS.

4.3 Reporter: Reporting Victim-AS’es
The third module in the monitoring subsystem is the fault

reporter (reporter for short). The reporter, deployed on a per-

PoP basis, is used to identify victim-AS’es and filter victim-

AS’es suffering from transient faults. The reporter proceeds

in two steps.

In the first step, the reporter receives the aggregated perfor-

mance data from the QoS monitor deployed in the same PoP,

and identifies whether an AS is suffering from faults based

on three observations. The first observation is that the packet

loss rate of each AS remains relatively stable when no fault

occurs; once a fault occurs, the packet loss rates of the AS’es

suffering from the fault suddenly increase. Therefore, for each

AS, we decide to monitor the variation of its packet loss rate,

and use a fault threshold to identify whether it is suffering

from faults. The second observation is that different AS’es

have different patterns of packet loss rates, because different

AS’es point to different middle paths and client paths, and

are maintained by different ISPs. Therefore, we should use an

AS-specific fault threshold rather than a unified one. The third

observation is that the condition of the Internet varies over

time, and therefore the fault threshold should dynamically

evolve as time goes by.

Based on the above considerations, the first step proceeds

as follows. The reporter considers that each AS is in healthy-
state, i.e., not victim-state (suffering from faults), at the be-

ginning. Here, we use "victim" instead of "faulty" to avoid

confusion, as a client AS suffering from faults may have no

faults occurring in its own network (the faults can occur in

the middle path between the AS and the PoP to affect the

traffic). The reporter maintains packet loss rates for each AS

in recent W minutes. For AS j, the reporter computes the aver-

age (lavg(j, t)) and standard deviation (σ(j, t)) of packet loss

rates, to characterize its current pattern, where t (Minute) is

the current time. Let Tv(j, t) be the fault threshold used to

identify whether AS j is suffering from faults at time t. We set

Tv(j, t) = lavg(j, t −1)+max(τσ(j, t −1),δ)

where δ is a constant (by default 3%) to filter minor faults.

For AS j, every minute, the reporter receives its current packet

loss rate lcur(j, t) from the QoS monitor, and then compares

lcur(j, t) with Tv(j, t). If lcur(j, t) exceeds Tv(j, t), the reporter

identifies that AS j is suffering from faults, and transits AS j
to victim-state. We call an AS in victim-state as a victim-
AS, and a time period in which an AS is continuously in

victim-state a victim-period. For a victim-AS, to avoid the

disturbance of high packet loss rate caused by faults, its fault

threshold will stop to update when it transits to victim-state

from healthy-state. When the packet loss rate of a victim-AS

stays below its fault threshold for W minutes, we consider

that all its packet loss rates in the sliding window are not

affected by faults. In this case, the victim-AS will transit back

to healthy-state and restart to update its fault threshold. In

our deployment, we set the window size W to 60 and τ to

3. Here, we provide some insights into their settings. We set

window size W to 60 (1 hour) because it can stably present

the recent condition of Internet. As shown in Figure 10, the

average packet loss rate varies smoothly per hour (with less

than 0.1% variation). We set τ to 3 because 3σ-rule is widely

used in outlier detection. When there is no fault, the loss rate

of each IP* can be regarded as independent and identically

distributed. Therefore, the average loss rate of IP*s (lavg(j, t))
follows normal distribution according to central limit theorem,

and applies to 3σ-rule.

Figure 4: CDF of fault duration of victim-AS’es.

In the second step, based on another observation, the re-

porter filters victim-AS’es suffering from transient faults, and

reports the remaining victim-AS’es to the diagnosing subsys-

tem. The observation is that transient faults disappear quickly,

and thus have limited harm to our cloud service. Therefore, we

would like to ignore transient faults. Based on the above con-

sideration, the second step proceeds as follows. Suppose the

current time is t. The reporter only reports the victim-AS’es

that satisfy the following two requirements to the diagnosing

subsystem: 1) the victim-AS is identified as suffering from

faults at time t; 2) the victim-AS has ever been identified as

suffering from faults for at least M minutes continuously in

the current victim-period. In our deployment, we set M to

3. We select M based on an analysis of the distribution of

the fault duration6 of victim-AS’es in three major PoPs in

December 2021. As shown in Figure 4, the fault duration of

almost 2/3 of victim-AS’es is below 3 minutes. Therefore,

setting M to 3 can efficiently filter transient faults without

compromising much timeliness.

Fake Fault

faulty IP* 5% or
blocked IP* 10%

reported by 1 PoP

Outbound Fault Inbound Fault Bidirectional Fault

Ambiguous FaultClient Fault

debug's loss rate 0

otherwisereported by all PoPs

debug's loss rate
QoS's loss rate

otherwise

otherwise

Fake Fault Filter:
Is it a Fake Fault?

Fault Debugger:
The Direction?

Fault Classifier:
The Category?

Victim-AS('es)

Figure 5: Decision tree.

5 Diagnosing Network Faults
In this section, we show how to use a decision tree in the

diagnosing subsystem to achieve accurate and fine-grained di-

agnosis. As shown in Figure 5, there are three critical decision

nodes in the decision tree: the fake fault filter (§ 5.1), the fault

classifier (§ 5.2), and the fault debugger (§ 5.3). The design of

the structure of the decision tree is quite intuitive. With the re-

ported victim-AS’es, first, the fake fault filter first filters those

fake faults that lead to misreported victim-AS’es. Second, the

fault classifier pick out the middle faults that AAsclepius may

circumvent from the true faults. Third, the fault debugger clas-

sifies the middle faults into inbound/outbound/bidirectional

faults to guide the subsequent traffic detouring. Each decision

node will be introduced in one subsection.

5.1 Fake-filter: Filtering Fake Faults
Motivation: The fault reporter in the monitoring subsystem

reports a victim-AS when the average packet loss rate of all

IP*s in the AS increase. However, the increase of average

packet loss rate does not mean that a real fault occurs. For

example, when a router that hosts an IP* is updating its oper-

ating system, it may not be able to respond to ICMP probes.

Thus the packet loss rate of this IP* will suddenly increase to

100%, which also leads to the increase of average packet loss

rate. If a victim-AS is actually healthy, we say it is suffering

from fake faults. Therefore, it is desired for each PoP to filter

all victim-AS’es with fake faults.

6The fault duration of a victim-AS refers to the interval between the first

time and the last time it is identified as suffering from faults in the same

victim-period.

Figure 6: IP* Classification.

Workflow: To prevent fake faults from interfering with our

diagnosis, AAsclepius deploys the first module in this subsys-

tem: a fake fault filter for each PoP (Fake-filter for short). In

each PoP, Fake-filter performs analysis for each IP* to iden-

tify whether a reported victim-AS is caused by a fake fault,

and we will only diagnose real faults in next two modules.

The input of Fake-filter includes: a victim-AS j with its IP*s,

and the historical loss rate of each IP*. Then we analyze why

the average packet loss rate increases a lot. Fake-filter divides

the IP*s into 5 categories according to their loss rate (see Fig-

ure 6), but only use three categories (faulty IP*s, blocked IP*s,

and healthy IP*s) to identify fake faults. The 5 categories of

IP*s are detailed below.

• Symbols: Suppose at time t f ault , victim-AS j transits to

victim-state, lasts for M = 3 minutes, and then is reported

to Fake-filter. Note that the setting of M is discussed in

Section 4.3. Let Tpre[3Min] be the 3 minutes before t f ault ,

and let Tpost [3min] be the 3 minutes after t f ault .

• Faulty IP*s: We call an IP* a faulty IP* if it satisfies the

three conditions: 1) its average loss rate in Tpre[3Min] is

lower than fault threshold Tv(j, t f ault); 2) its average loss

rate in Tpost [3Min] is in [Tv(j, t f ault),100%); 3) its highest

loss rate in Tpost [3min] is lower than 100%. We consider

that faulty IP*s are affected by the fault occurring at t f ault .

• Blocked IP*s: We call an IP* a blocked IP* if it sat-

isfies the three conditions: 1) its average loss rate in

Tpre[3Min] is lower than Tv(j, t f ault); 2) its average loss

rate in Tpost [3Min] is higher than Tv(j, t f ault); 3) its highest

loss rate in Tpost [3Min] reaches 100%. These IP*s are often

blocked in two cases. First, they are added into a blocklist

by some network devices (IP blocking). Second, with a

small probability, they suffer from serious faults.

• Healthy IP*s: We call an IP* a healthy IP* if its average

loss rates in both Tpre[3Min] and Tpost [3Min] are lower than

Tv(j, t f ault). We consider that healthy IP*s are not affected

by the fault occurring at t f ault .

• Inactive IP*s: We call an IP* an inactive IP* if its aver-

age loss rate in Tpre[3Min] is 100%. Inactive IP*s previ-

ously responded to ICMP probes, but stop responses before

Tpre[3Min].
• Abnormal IP*s: We call an IP* an abnormal IP* if its

average loss rate in Tpre[3Min] is in [Tv(j, t f ault),100%).
We suspect that abnormal IP*s have suffered from other

network anomalies or network faults occurring before

Tpre[3Min].

Identifying fake faults: After classifying faults into the above

five categories, we analyze whether it is a fake fault. Obvi-

ously, the last two categories cannot be used for identification.

We define two metrics using the first three categories. We

define faulty IP* ratio as
faulty IP*s

total
, and define blocked

IP* ratio as # blocked IP*s
total

, where # total = # faulty IP*s +

blocked IP*s + # healthy IP*s. We set two thresholds for

the two metrics respectively. According to long time main-

tenance, we find when If the faulty IP* ratio is no less than

5%, or the blocked IP* ratio is no less than 10%, Fake-filter

reports the fault as real; otherwise, Fake-filter reports the fault

as fake.

Figure 7: CDF of block IP* ratio of victim-AS’es without

faulty IP*s.

While the threshold for faulty IP* ratio is mainly set ac-

cording to long-time operational experience, we provide some

insights in the setting of the threshold for block IP* ratio.

When real faults occur, an affected IP* will be either faulty

IP* or block IP*. When there is no real fault, the faulty IP*

ratio keeps close to 0, but the blocked IP* ratio often reaches a

little larger than 0 (e.g., 5%) due to IP blocking. Therefore, we

should set a larger threshold for blocked IP* ratio to filter the

fake faults caused by IP blocking. We analyze the distribution

of the block IP* ratio of all reported victim-AS’es without

faulty IP*s in May 10th, 2023. These reported faults are of

high probability to be fake faults as no faulty IP* is reported,

and a fault with a larger block IP* ratio should have a larger

probability of being real fault. As shown in Figure 7, about

80% reported victim-AS’es have less than 10% block IP*

ratio. Therefore, setting the threshold for blocked IP* ratio to

10% may efficiently filter most fake faults while not missing

serious faults.

5.2 Classifier: Identifying Fault Category
Overview: To identify fault category, AAsclepius deploys the

second module in this subsystem: the fault classifier (classifier

for short). Recalling in the previous module, Fake-filter in

each PoP filters fake faults, and reports the other faults to the

classifier. The input is the received faults from many PoPs in

every minute: <PoP1,victim-AS list1> ... <PoPn,victim-AS

listn>. For each victim-AS, the classifier outputs its fault cat-

egory: client fault, middle fault, or ambiguous fault. For each

middle fault, the classifier will report the corresponding PoP

and victim-AS to the third module, i.e., the fault debugger.

Workflow: Our observation is the same as the prior work [11]:

most of the time the victim-AS is caused by either client faults

or middle faults. We use the number of PoPs that report each

victim-AS to identify fault category, and there are three cases.

• Case 1: If a victim-AS is reported from only one PoP, the

classifier identifies the fault as a middle fault.

• Case 2: If a victim-AS is reported from all PoPs, the classi-

fier identifies the fault as a client fault.

• Case 3: Otherwise, it is too difficult to identify, and we

have to concede, and the classifier identifies the fault as an

ambiguous fault.

The reason of the above classification is as follows. Consider-

ing a client in an AS, for different PoPs, the middle paths are

different, while the client paths are usually similar. Therefore,

1) that a victim-AS is reported from 1 PoP is incurred by

middle faults with high probability; 2) that a victim-AS is

reported from all PoPs is incurred by client faults with high

probability; 3) that a victim-AS is reported from multiple but

not all PoPs, and the above probabilities of middle faults and

client faults both decrease a lot. Our maintenance results (see

Figure 8) show that the probability of case 3 is around 7%,

and thus currently we just ignore case 3.

Figure 8: Fraction of each category of faults.

Operational experience: In our daily maintenance, we find

a situation that will degrade the accuracy of our diagnosis:

although multiple PoPs report the same victim-AS, the time

they first report is not always the same, but sometimes with

a one-minute or two-minute difference. A potential reason

behind is as follows. In the early stage of a network fault,

there may be only a small amount of congested links. Due

to the randomness of the routing inside the victim-AS, the

ICMP probes may go through paths with slight difference,

and thus the results measured at different PoP points may

be slightly different. For example, suggest that ICMP probes

sent from both PoPi and PoPi+1 reach a router using equal

cost multi-path strategy (ECMP) in a client AS, and there are

two equal-cost paths towards the destination. One of the path

first becomes congested due to the randomness of hash func-

tions, while the other one remains uncongested. Suggest that

the ICMP probes from PoPi are forwarded to the congested

link, and those from PoPi+1 are forwarded to the uncongested

link, then only PoPi reports this AS as a victim-AS. As the

congestion further evolves (which may take one or two min-

utes), both PoPi and PoPi+1 report this AS as a victim-AS.

In this case, if the classifier diagnoses a victim-AS once it is

reported, the victim-AS may be misdiagnosed because there

could be some PoPs that have not reported this victim-AS in

time. To address this issue, for each reported victim-AS, we

decide to delay the diagnosis for two minutes. Specifically,

only when a victim-AS is continuously reported from a PoP

for three minutes, the classifier starts to diagnose it. The clas-

sifier diagnoses the victim-AS based on the number of PoPs

that report it in the past three minutes, instead of the number

in the current minute.

5.3 Debugger: Identifying Fault Direction
Overview: Recalling that the previous module reports a PoP

and a victim-AS to this module. Suggest PoPi is reported

to find that victim-AS is suffering from middle faults. This

module, namely fault debugger (debugger for short), is used

to further identify and output the direction of the middle fault.

There are three faults with different directions: outbound

faults, inbound faults, and bidirectional faults. We propose

a novel technique, namely PathDebugging, to perform the

debugging process. This technique is the key novelty of AAs-

clepius.

Victim-AS 2

C

PoP 2PoP 1

Private Backbone

OutboundOutbound

PoP n PoP 3

Inbound Debugging

…

PRPRMS MS

Figure 9: PathDebugging. "MS" refers to the monitor server

in the PoP, "C" refers to a client in the victim-AS2, and "×"

refers to a middle fault.
Statement of fault direction: As shown in Figure 9, there are

four paths between the monitor server (MS) and the client (C):

two outbound paths (solid lines with arrows), one inbound

path (dash red lines with arrows), and one debugging path

(dash blue lines with arrows including the part across the

private backbone). In this Figure, the reported PoP and victim-

AS from the previous module are PoP1 and AS2. This means

that we only know there is a fault between PoP1 and AS2,

but do not know the fault direction. Outbound faults, inbound

faults, and bidirectional faults point to different directions.

For different fault directions, we will use different detouring

strategies in the detouring subsystem (§ 6).

Rationale: To identify whether the fault is in the outbound

path or the inbound path, the idea of our key technique PathDe-

bugging is to replace inbound path with a zero-fault path,

which is named the debugging path. After replacement, we

monitor the packet loss rate of the ICMP probes between

the reported PoP and victim-AS: 1) if the loss rate does not

change, it means it is an outbound fault; 2) if the loss rate

decreases to near 0, it is an inbound fault; 3) if the loss rate

decreases but not reach 0, it is a bidirectional fault. Next we

show how to set a debugging path and route the ICMP reply

packets along the debugging path.

Workflow: Recall that each PoP has multiple PRs (peering

routers), each PR is connected to a monitoring server, and

each monitoring server runs a QoS agent. We deploy an-

other agent named debugging agent in each monitoring server.

These two agents are very similar except that they use differ-

ent source IP addresses. By leveraging the debugging agent

and BGP prefix announcement, next we show how to set the

debugging path and let the ICMP reply packets follow the

debugging path.

Phase 1: announcing BGP prefixes. We have deployed many

PoPs: PoP1, PoP2, ..., PoPn. We associate every two adjacent

PoPs for debugging and detouring. We call PoPi+1 the backup
of PoPi. For PoPi, we assign a unique IP /24 prefix to the

debugging agents in it, and the prefix is announced by all PRs

in the backup PoPi+1. For example in Figure 9, the PRs in

PoP2 announce the unique prefix of the debugging agent in

PoP1.

Phase 2: activating the debugging path. This phase aims to

let the ICMP reply packets follow the debugging path, and

observe the packet loss rate. Take Figure 9 as an example. The

debugging agent in PoP1 chooses a source IP address from its

unique IP /24 prefix Pre1, and then sends ICMP packets along

the outbound path (the solid line) to the client. The ICMP

reply packets will follow the debugging path (the dash blue

line crossing the private backbone), because the PRs in PoP2

announce the unique prefix Pre1. Note that there is no fault

in the debugging path for the following two reasons. First,

as the middle fault is identified when only PoP1 reports the

fault, there must be no fault in the path from the victim-AS to

PoP2. Second, the private backbone is adequately provisioned,

and thus can be considered as faultless. To save monitoring

overhead, the debugging path is inactive by default, and will

be activated when the module Fake-filter starts to report a

victim-AS and a PoP.

Phase 3: identifying fault direction. Let lQoS be the average

packet loss that is monitored by QoS agents. Let ldebug be

the average packet loss rate that is monitored by debugging

agents. The fault debugger then identifies the fault direction

according to the following formula.

Direction =

⎧⎪⎨
⎪⎩

Inbound Cond1

Outbound ¬Cond1 ∧Cond2

Bidirectional ¬Cond1 ∧¬Cond2

Cond1 =
[
ldebug � 3%

]

Cond2 =
[|lQoS − ldebug|� 3%

]

The rationale behind the formula is as follows. 1) If it is an

inbound fault, there should be no fault in outbound path and

debugging path, and therefore ldebug should be small, which

corresponds to Cond1 =
[
ldebug � 3%

]
. Here, 3% equals

to the constant δ (Section 4.3) that we use to filter minor

faults. 2) If it is an outbound fault, both debugging agent

and QoS agent should detect the fault, and therefore they

must not meet Cond1. Further, considering there is no fault

in inbound path and debugging path, the difference between

ldebug and lQoS should also be small, which corresponds to

Cond2 =
[|lQoS − ldebug|� 3%

]
. 3) If it is an bidirectional

fault, as discussed in 1) and 2), it should not meet Cond1 and

Cond2.

6 Detouring Victim Traffic
The detouring subsystem consists of a detouring controller

and a BGP injector deployed on a per-PoP basis. We describe

how the detouring controller and the BGP injector cooper-

ate to detour traffic suffering from faults (so called victim

traffic), circumventing outbound faults (§ 6.1) and inbound

faults (§ 6.2), respectively. For bidirectional faults, we can

split them into outbound faults and inbound faults, and then

circumvent them separately. Therefore, we will not discuss

how to circumvent bidirectional faults.

6.1 Circumventing Outbound Faults
Rationale: For every outbound fault associated with one

victim-AS j and one reported PoPi, the traffic from PoPi to

victim-AS j is the victim traffic. To circumvent the outbound

fault, considering its backup PoPi+1 not reporting victim-AS j,

we decide to detour the victim traffic to egress at PoPi+1. As

the cloud network is fully under control, to achieve this, we

can inject BGP routes to DRs in PoPi. Because traffic de-

touring will inevitably degrade the latency when there is no

fault, we need to detour the victim traffic back as soon as

possible after the fault disappears. As AAsclepius deploys

the QoS monitor on monitoring servers directly connected

to PRs, the traffic detouring at DRs will not interfere with

QoS monitoring. Therefore, the monitoring subsystem can

continuously identify whether victim-AS j is suffering from

faults after detouring, and thus we can detour the victim traffic

back when we have high confidence that the fault has already

disappeared.

Workflow: The workflow of detouring victim traffic proceeds

as follows. First, to ensure safety, before detouring the victim

traffic, the detouring controller checks whether the PRs in

PoPi+1 and the private backbone will exceed 80% load rate

after this detouring. Here, AAsclepius can easily determine

the load rate of the PRs and private backbone after traffic de-

touring because the traffic monitoring system built in Huawei

Cloud (§ 2.1) shares its visibility to traffic volume between

any PoP and any AS to AAsclepius. Second, if the checking

result is safe, the detouring controller then collects all IP pre-

fixes of victim-AS j from PRs in PoPi+1 rather than PoPi, so

as to guarantee that the PRs in PoPi+1 can route the detoured

traffic to the destination IP address. Third, the detouring con-

troller passes the collected IP prefixes of victim-AS j and the

IP addresses of PRs in PoPi+1 to the BGP injector in PoPi.

In PoPi, the BGP injector maintains a BGP connection with

each DR. Fourth, the BGP injector generates corresponding

BGP routes for the received IP prefixes of victim-AS j. For

these routes, the local_pref7 is set to a very large value (e.g.,
1000), and the next_hop8 is set to the received IP addresses of

PRs in in PoPi+1. Fifth, in PoPi, the BGP injector announces

the generated BGP routes to all DRs. By setting local_pref
to a large value, the generated routes can override the original

routes, and then the victim traffic will be detoured to egress at

PoPi+1. Once victim-AS j has been identified as not suffering

from faults continuously for 10 minutes by the fault reporter

in PoPi (§ 4.3), the detouring controller will then inform the

BGP injector in PoPi to withdraw the corresponding routes,

so as to detour the victim traffic back.

6.2 Circumventing Inbound Faults
Rationale: For every inbound fault associated with one

victim-AS j and PoPi, the traffic from victim-AS j to PoPi
is the victim traffic. Similarly, we decide to detour the victim

traffic to ingress at PoPi+1. However, the PoP at which the

victim traffic ingresses is directly selected by ISPs, not the

CSP. To address this issue, we can change the BGP announce-

ment of PoPi, and leverage BGP to detour the victim traffic.

In order for the QoS monitor to continuously monitor exist-

ing faults to provide guidance on when to detour the victim

traffic back, the change of the BGP announcement should not

involve the prefixes assigned to the QoS monitor.

Workflow: The workflow of detouring victim traffic proceeds

as follows. First, the detouring controller performs the safety

checking similar to that in circumventing outbound faults.

Second, In PoPi, the detouring controller informs the BGP

injector to announce the dominating prefixes of PoPi to all

PRs. Note that the BGP injector needs to prepend multiple

duplicate AS’es to the AS_path of these prefixes. In this

way, after BGP converges, the victim traffic will be routed to

ingress at PoPi+1. Note that the dominating prefixes of PoPi
are also announced by the other PoPs with multiple duplicate

AS’es prepended to their AS_path (§ 2.1). We should ensure

that PoPi+1 prepends relatively less duplicate AS’es to the

AS_path of these prefixes.

Discussion: A major risk of changing the BGP announce-

ment at PRs is that it detours not only the victim traffic, but

also all the other inbound traffic of PoPi (we call them inno-

cent traffic). The latency of innocent traffic will inevitably

degrade. Currently, considering the inevitable side effects,

we currently disable AAsclepius to execute automatic detour-

ing for inbound faults. AAsclepius only notifies the network

operators of inbound faults, and provides an API for traffic

detouring.

7The BGP local preference attribute is the second BGP attribute that can

be used to choose the exit path for an AS.
8The BGP next hop attribute is the next hop IP address that is used to

reach a certain destination.

6.3 Discussion
We first discuss the benefits of identifying fault direction,

which is the key novelty of AAsclepius. Then, we discuss

the potential downsides in the additional path asymmetry

introduced by AAsclepius.

Benefits of identifying fault direction: Identifying fault di-

rection can help minimize impacted traffic during traffic de-

touring. Because the start point of outbound path (cloud →
client) is under control, to circumvent outbound faults, we

can accurately determine outbound traffic requiring traffic

detouring. Because the start point of inbound path (client

→ cloud) is beyond control, to circumvent inbound faults,

we must change BGP announcement, and all inbound traffic

is impacted. Therefore, with fault direction, we can reroute

traffic accordingly to minimize impacted traffic.

Negligible downsides in introducing path asymmetry: Ac-

cording to RFC 3349 [25], the additional path asymmetry

introduced by AAsclepius during detouring victim traffic

may degrade performance of TCP traffic. Nevertheless, path

asymmetry is a common phenomenon in the Internet (87%

path-tuples show path asymmetry [26]). AAsclepius has been

running for years, without customers complaining about per-

formance degradation. Further, some prior works (Meta Edge-

Fabric [12]/ Microsoft CASCARA [27]) also introduce addi-

tional path asymmetry as they switch transit-providers for bet-

ter performance or cost-effectiveness. Therefore, we conclude

that the additional path asymmetry should have negligible

impact on traffic performance.

7 Evaluation
We first present the deployment status of AAsclepius (§ 7.1).

Then, we present the performance of monitoring subsystem,

diagnosing subsystem, and detouring subsystem (§ 7.2-7.4).

In addition, we select several typical faults as case studies to

illustrate the workflow of AAsclepius (see Appendix A).

7.1 Deployment Status
We have fully deployed AAsclepius on a large scale in our

country. In August 2020, we start to run AAsclepius for just

some provinces. After a month of testing, we start to run

AAsclepius for the whole country. So far, AAsclepius has

been running stable for two years. AAsclepius has diagnosed

thousands of faults and circumvented more than two hundred

middle faults. In 2021 and 2022, AAsclepius protects Huawei

Cloud from major accidents. Our SRE team identifies network

faults that cause more than five VIP customers to experience

more than 5% packet loss rate for 10 minutes as major acci-

dents. Major accidents typically last several hours, involving

tens of AS’es, with (i) construction-related optical cable cuts,

(ii) router failures, and (iii) traffic congestion being main root

causes. For example, in August 2022, an outbound fault (may

lead to major accident) affecting three provinces began at

20:57, resulting in a packet loss rate of up to 40%. AAscle-

pius executes traffic detouring at 21:04 (within 8 minutes)

Figure 10: Average packet loss rate vs. time.

to circumvent the middle fault, and the fault finally ended at

22:30.

7.2 Performance of Monitoring Subsystem
We present the performance of the monitoring subsystem in

three major PoPs in December 2021. First, we present the

trend of packet loss rate and the distribution of victim-AS’es

in different hours. Then, we present the distribution of fault

duration of victim-AS’es. The following figures present data

aggregated over 31 days in December.

Average packet loss rate vs. time (Figure 10): For the three

major PoPs, we calculate the average packet loss rate of all

IP*s in different hours. First, we find that the trend of the

packet loss rate in each PoP is similar. This is possibly be-

cause the middle network in our country is adequately pro-

visioned and well engineered, and thus the packet losses are

mainly contributed by the client network. Because each IP*

shares similar client paths in different PoPs, its packet loss

rates in different PoPs are also similar, and thus the average

packet loss rate in each PoP shares similar trends. Second,

we find that the packet loss rate sharply increases to the peak

at 0:00/24:00. It is possibly because ISPs in our country usu-

ally update routes and maintain network devices at this time,

which is usually accompanied by network faults such as BGP

misconfigurations, leading to the increase of average packet

loss rate. Third, we find that the average packet loss rate in

PoP1 is slightly higher than that in PoP2 and PoP3. We sug-

gest this is because that the middle network PoP1 connected

to usually has a relatively higher load.

Distribution of victim-AS’es vs. time (Figure 11): For each

PoP, we count the distribution of victim-AS’es occurring in

different hours. First, similar to the packet loss rate, we find

that the distribution of the occurrence of victim-AS’es in each

PoP is similar. Second, we also find that victim-AS’es are

more likely to occur at 0:00/24:00. Third, we find that the

distribution of the occurrence of victim-AS’es is positively

correlated with the trend of packet loss rate. We suggest this

is because a higher packet loss rate implies poorer network

quality, which means more faults and thus more victim-AS’es.

Fault duration of victim-AS’es (Figure 12): Similar to Fig-

ure 4, we further present the distribution of fault duration of

victim-AS’es in each PoP. We also find that the distribution is

quite similar in each PoP. Considering that each PoP shares

similar network quality, we can set unified parameters for

each PoP to ease maintenance.

Figure 11: Distribution of victim-AS’es vs. time.

Figure 12: CDF of fault duration of victim-AS’es.

7.3 Performance of Diagnosing Subsystem
We present the performance of the diagnosing subsystem

in three major PoPs in December 2021. First, we present

the fraction of each category of faults. Then, we present the

distribution of each category of faults in different hours. The

following figures present data aggregated over 31 days in

December.

Fraction of each category of faults (Figure 13): We count

the fraction of each category of faults in each PoP. We find

that the fractions in each PoP are similar: more than 50%

of the faults are client faults, about 25% are fake faults, less

than 15% are middle faults. It is possibly because the middle

network in our country is well engineered and adequately

provisioned, so that middle faults occur less frequently. We

find that the fraction of outbound faults is far larger than

that of inbound faults. The results show that outbound faults,

inbound faults, and bidirectional faults account for 7%, 1%,

and 2%, respectfully. We suspect this is because there is much

more user download traffic than user upload traffic in the

middle and client network, and thus the outbound paths are

more likely to be congested.

Distribution of each category of faults vs. time (Figure 14):
We count the distribution of each category of faults occurring

in different hours. Similar to the distribution of victim-AS’es

occurring in different hours (see Figure 11), we find that faults

are more likely to occur at 0:00/24:00.

Potential misclassifications: Misclassifications are unavoid-

able. When there is a false positive (a non-middle fault is

classified as a middle fault), AAsclepius may execute useless

traffic detouring and increase the latency. When there is a false

negative (a middle fault is classified as a non-middle fault),

AAsclepius may not reduce the packet loss rate of victim

traffic and receive complaints from customers. Because most

network faults occur beyond our control, we can hardly obtain

ground truth and misclassification rate. Nevertheless, AAscle-

pius can reduce packet loss rate in most traffic detouring (see

Figure 13: Fraction of each category of faults.

Figure 14: Distribution of each category of faults vs. time.

Figure 16) and has protected cloud from major accidents for

years, indicating an extremely low misclassification rate.

7.4 Performance of Detouring Subsystem
We present the performance of the detouring subsystem in

three major PoPs in December 2021. We first present the

response time of AAsclepius to middle faults. We then present

the effect of traffic detouring on the packet loss rate and

latency of victim traffic. The results show that the detouring

subsystem is fast and effective. Note that we currently disable

AAsclepius to execute automatic detouring for inbound faults,

and thus all traffic detouring in this section is for outbound

faults.

Evaluation criteria: In order to evaluate the detouring sub-

system, we deploy VM agents in VMs in Huawei Cloud to

perform VM monitoring. Similar to QoS agents, VM agents

also send ICMP probes to each IP*. Because the probes sent

from VMs are routed the same as the cloud traffic, we regard

the performance of VM monitoring as the QoS, and use it to

evaluate the effect of traffic detouring.

Response time to middle faults (Figure 15): We define the

response time to a middle fault as the interval between the

time its associated victim-AS transits from healthy-state to

victim-state and the time the detouring subsystem reports the

traffic detouring is executed. We find that the response time to

all middle faults is within 8 minutes. Typically, the monitoring

subsystem takes 3∼5 minutes to identify and report a victim-

AS; the diagnosing subsystem takes 3∼4 minutes to identify

its category and direction; the detouring subsystem takes less

than 30 seconds to execute the traffic detouring.

Packet loss rate optimization (Figure 16): For each middle

fault, we compare the average packet loss rate of its associ-

ated victim-AS in VM monitoring within 5 minutes before

and after the corresponding traffic detouring is executed. We

find that each traffic detouring reduces the packet loss rate

by 7.0% on average. There are only less than 10% traffic

detouring degrading the packet loss rate by less than 0.5%.

This is possibly because that the middle faults have already

disappeared when the traffic detouring is executed.

Latency variation (Figure 17): For each middle fault, we

compare the average latency of its associated victim-AS in

VM monitoring within 5 minutes before and after the cor-

responding traffic detouring is executed. We find that each

traffic detouring slightly degrades the latency by 1.9ms on

average. This is reasonable because traffic detouring usually

degrades the latency when no fault occurs, and the degradation

has already been weakened by the middle faults.

Figure 15: CDF of response time to middle faults.

Figure 16: CDF of packet loss rate optimization.

Figure 17: CDF of latency variation.

8 Related Work
Fault monitoring and diagnosis at Internet scale: Based

on the measurement methods, existing fault monitoring and

diagnosis solutions can be mainly classified into three cat-

egories: 1) active solutions which send probes to the Inter-

net [14, 28–30]; 2) passive solutions which monitor ongoing

connections [12, 13, 15, 17, 31, 32]; 3) hybrid solutions which

combine active and passive solutions [1, 11, 16, 18, 19, 33].

Among these solutions, BlameIt [11] (hybrid), Entact [14]

(active), Edge fabric [12] (passive), Espresso [13] (passive),

and CPR [15] (passive) are most related to our application

scenarios. BlameIt uses its passive measurement data to mon-

itor faults and identify the fault category in the first phase,

and further triggers impact-prioritized probes to localize the

faulty AS for middle faults with the largest impacts in the

second phase. However, BlameIt does not identify the fault di-

rection, and is therefore distinguished from AAsclepius. The

other solutions above do not diagnose faults but support traffic

engineering, and we will cover them in the next paragraph.

Traffic engineering: There are substantial traffic engineering

solutions, most of which are dedicated to optimizing CDN per-

formance. A related kind of solutions select egress path and

ingress point that a client should be directed to as a function

of path performance [12–16,34,35]. Among them, Entact [14]

measures path performance by sending probes to different

IP /24 prefixes through alternate paths. Edge Fabric [12] and

Espresso [13] passively measure path performance in differ-

ent IP /24 prefixes by directing a small amount of flows to

alternate paths and tracking their performance. Similar to

AAsclepius, Espresso leverages Google’s private backbone,

B4 [36], and thus can route traffic to egress at distant PoPs.

Through deployment in the kernel, CPR [15] even provides

path failover at connection granularity. However, all the listed

traffic engineering solutions optimize their traffic performance

by selecting alternate outbound paths based on end-to-end

measurement, and thus can only handle outbound faults. In

contrast, AAsclepius detours traffic based on the category

and the direction of the faults, and thus can handle both in-

bound and outbound faults. Therefore, these solutions are

distinguished from AAsclepius. AAsclepius is also comple-

mentary to these solutions, as it can provide fine-grained fault

category and fault direction information, which is useful for

CDN performance optimization. Other solutions include IP

anycast [37], co-located DNS and proxy servers [38], end-user

mapping with EDNS [39], etc. [40].

Solutions in datacenters: Network faults in datacenters have

been studied over decades, and researchers have provided

various solutions [41–63]. These systems work excellently in

data centers, but have not been extended to Internet scale.

9 Conclusion
Network fault is a widespread phenomenon in the Internet,

which could harm the QoS of Huawei Cloud. Existing works

do not identify fault direction. In this paper, we propose a

fully automatic system, namely AAsclepius, to monitor and

diagnose network faults, and detour victim traffic to circum-

vent middle faults. The key novelty of AAsclepius, PathDe-

bugging, achieves identifying the directions of middle faults.

AAsclepius has proven itself to be mature and reliable in two

years of production deployment, and we consider extending

AAsclepius to IPv6 network. Although the core methodology

applied to IPv4 network can still be applied to IPv6 network,

the main difficulty in the extension is how to efficiently find

active IP addresses of high quality for QoS monitoring in the

IPv6 address space which is much more larger than IPv4, and

we are seeking for the solution.

Acknowledgment
We would like to thank the anonymous reviewers and shep-

herd Reto Achermann, for their help in improving this paper.

This work is supported by Key-Area Research and Develop-

ment Program of Guangdong Province 2020B0101390001,

National Natural Science Foundation of China (NSFC) (No.

U20A20179).

References

[1] Amogh Dhamdhere, David D Clark, Alexander Gamero-

Garrido, Matthew Luckie, Ricky KP Mok, Gautam Aki-

wate, Kabir Gogia, Vaibhav Bajpai, Alex C Snoeren,

and Kc Claffy. Inferring persistent interdomain conges-

tion. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, pages

1–15, 2018.

[2] Rodérick Fanou, Francisco Valera, and Amogh Dhamd-

here. Investigating the causes of congestion on the

african ixp substrate. In Proceedings of the 2017 Inter-
net Measurement Conference, pages 57–63, 2017.

[3] Matthew Luckie, Amogh Dhamdhere, David Clark,

Bradley Huffaker, and KC Claffy. Challenges in in-

ferring internet interdomain congestion. In Proceedings
of the 2014 Conference on Internet Measurement Con-
ference, pages 15–22, 2014.

[4] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan.

Understanding network failures in data centers: mea-

surement, analysis, and implications. In Proceedings of
the ACM SIGCOMM 2011 Conference, pages 350–361,

2011.

[5] Athina Markopoulou, Gianluca Iannaccone, Supratik

Bhattacharyya, Chen-Nee Chuah, Yashar Ganjali, and

Christophe Diot. Characterization of failures in an oper-

ational ip backbone network. IEEE/ACM transactions
on networking, 16(4):749–762, 2008.

[6] Gianluca Iannaccone, Chen-nee Chuah, Richard Mortier,

Supratik Bhattacharyya, and Christophe Diot. Analysis

of link failures in an ip backbone. In Proceedings of
the 2nd ACM SIGCOMM Workshop on Internet measur-
ment, pages 237–242, 2002.

[7] Ratul Mahajan, David Wetherall, and Tom Anderson.

Understanding bgp misconfiguration. ACM SIGCOMM
Computer Communication Review, 32(4):3–16, 2002.

[8] Nick Feamster and Hari Balakrishnan. Detecting bgp

configuration faults with static analysis. In Proceedings
of the 2nd conference on Symposium on Networked Sys-
tems Design & Implementation-Volume 2, pages 43–56,

2005.

[9] Daniel Turner, Kirill Levchenko, Alex C Snoeren, and

Stefan Savage. California fault lines: understanding the

causes and impact of network failures. In Proceedings of
the ACM SIGCOMM 2010 Conference, pages 315–326,

2010.

[10] Monia Ghobadi and Ratul Mahajan. Optical layer fail-

ures in a large backbone. In Proceedings of the 2016 In-
ternet Measurement Conference, pages 461–467, 2016.

[11] Yuchen Jin, Sundararajan Renganathan, Ganesh Anan-

thanarayanan, Junchen Jiang, Venkata N Padmanabhan,

Manuel Schroder, Matt Calder, and Arvind Krishna-

murthy. Zooming in on wide-area latencies to a global

cloud provider. In Proceedings of the ACM Special In-
terest Group on Data Communication, pages 104–116.

2019.

[12] Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan

Katz-Bassett, Harsha V Madhyastha, Italo Cunha, James

Quinn, Saif Hasan, Petr Lapukhov, and Hongyi Zeng.

Engineering egress with edge fabric: Steering oceans of

content to the world. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communi-
cation, pages 418–431, 2017.

[13] Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve

Padgett, Matthew Holliman, Gary Baldus, Marcus Hines,

Taeeun Kim, Ashok Narayanan, Ankur Jain, et al. Tak-

ing the edge off with espresso: Scale, reliability and

programmability for global internet peering. In Pro-
ceedings of the Conference of the ACM Special Interest
Group on Data Communication, pages 432–445, 2017.

[14] Zheng Zhang, Ming Zhang, Albert G Greenberg, Y Char-

lie Hu, Ratul Mahajan, and Blaine Christian. Optimiz-

ing cost and performance in online service provider

networks. In NSDI, pages 33–48, 2010.

[15] Raul Landa, Lorenzo Saino, Lennert Buytenhek, and

João Taveira Araújo. Staying alive: Connection path

reselection at the edge. In NSDI, pages 233–251, 2021.

[16] Matt Calder, Ryan Gao, Manuel Schröder, Ryan Stew-

art, Jitendra Padhye, Ratul Mahajan, Ganesh Anantha-

narayanan, and Ethan Katz-Bassett. Odin: Microsoft’s

scalable fault-tolerant cdn measurement system. In 15th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), pages 501–517, 2018.

[17] Brandon Schlinker, Italo Cunha, Yi-Ching Chiu,

Srikanth Sundaresan, and Ethan Katz-Bassett. Internet

performance from facebook’s edge. In Proceedings of
the Internet Measurement Conference, pages 179–194,

2019.

[18] Rupa Krishnan, Harsha V Madhyastha, Sridhar Srini-

vasan, Sushant Jain, Arvind Krishnamurthy, Thomas An-

derson, and Jie Gao. Moving beyond end-to-end path

information to optimize cdn performance. In Proceed-
ings of the 9th ACM SIGCOMM conference on Internet
measurement, pages 190–201, 2009.

[19] Ming Zhang, Chi Zhang, Vivek S Pai, Larry L Peterson,

and Randolph Y Wang. Planetseer: Internet path failure

monitoring and characterization in wide-area services.

In OSDI, volume 4, pages 12–12, 2004.

[20] Anukool Lakhina, Mark Crovella, and Christiphe Diot.

Characterization of network-wide anomalies in traffic

flows. In Proc. ACM IMC, 2004.

[21] Ajay Anil Mahimkar, Zihui Ge, Aman Shaikh, Jia Wang,

Jennifer Yates, Yin Zhang, and Qi Zhao. Towards au-

tomated performance diagnosis in a large iptv network.

ACM SIGCOMM Computer Communication Review,

39(4):231–242, 2009.

[22] Partha Kanuparthy and Constantine Dovrolis. Pythia:

Diagnosing performance problems in wide area

providers. In 2014 USENIX Annual Technical Con-
ference (USENIX ATC 14), pages 371–382, 2014.

[23] Anukool Lakhina, Mark Crovella, and Christophe Diot.

Diagnosing network-wide traffic anomalies. ACM SIG-
COMM computer communication review, 34(4):219–

230, 2004.

[24] Junchen Jiang, Rajdeep Das, Ganesh Ananthanarayanan,

Philip A Chou, Venkata Padmanabhan, Vyas Sekar, Esb-

jorn Dominique, Marcin Goliszewski, Dalibor Kukoleca,

Renat Vafin, et al. Via: Improving internet telephony

call quality using predictive relay selection. In Proceed-
ings of the 2016 ACM SIGCOMM Conference, pages

286–299, 2016.

[25] Hari Balakrishnan, V Padmanabhan, Godred Fairhurst,

and Mahesh Sooriyabandara. Rfc3449: Tcp perfor-

mance implications of network path asymmetry, 2002.

[26] Wouter De Vries, José Jair Santanna, Anna Sperotto,

and Aiko Pras. How asymmetric is the internet? a study

to support the use of traceroute. In Intelligent Mech-
anisms for Network Configuration and Security: 9th
IFIP WG 6.6 International Conference on Autonomous
Infrastructure, Management, and Security, AIMS 2015,
Ghent, Belgium, June 22-25, 2015. Proceedings 9, pages

113–125. Springer, 2015.

[27] Rachee Singh, Sharad Agarwal, Matt Calder, and

Paramvir Bahl. Cost-effective cloud edge traffic en-

gineering with cascara. In NSDI, pages 201–216, 2021.

[28] Lin Quan, John Heidemann, and Yuri Pradkin. Trinocu-

lar: Understanding internet reliability through adaptive

probing. ACM SIGCOMM Computer Communication
Review, 43(4):255–266, 2013.

[29] Ítalo Cunha, Pietro Marchetta, Matt Calder, Yi-Ching

Chiu, Bruno VA Machado, Antonio Pescapè, Vasileios

Giotsas, Harsha V Madhyastha, and Ethan Katz-Bassett.

Sibyl: a practical internet route oracle. In 13th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 16), pages 325–344, 2016.

[30] Harsha V Madhyastha, Tomas Isdal, Michael Piatek,

Colin Dixon, Thomas Anderson, Arvind Krishnamurthy,

and Arun Venkataramani. iplane: An information plane

for distributed services. In Proceedings of the 7th sympo-
sium on Operating systems design and implementation,

pages 367–380, 2006.

[31] Thomas Holterbach, Edgar Costa Molero, Maria Apos-

tolaki, Alberto Dainotti, Stefano Vissicchio, and Laurent

Vanbever. Blink: Fast connectivity recovery entirely in

the data plane. In 16th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 19),
pages 161–176, 2019.

[32] Venkata N Padmanabhan, Sriram Ramabhadran, and

Jitendra Padhye. Netprofiler: Profiling wide-area net-

works using peer cooperation. In International Work-
shop on Peer-to-Peer Systems, pages 80–92. Springer,

2005.

[33] Vasileios Giotsas, Christoph Dietzel, Georgios Smarag-

dakis, Anja Feldmann, Arthur Berger, and Emile Aben.

Detecting peering infrastructure outages in the wild. In

Proceedings of the conference of the ACM special in-
terest group on data communication, pages 446–459,

2017.

[34] Hongqiang Harry Liu, Raajay Viswanathan, Matt Calder,

Aditya Akella, Ratul Mahajan, Jitendra Padhye, and

Ming Zhang. Efficiently delivering online services

over integrated infrastructure. In 13th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 16), pages 77–90, 2016.

[35] Vytautas Valancius, Bharath Ravi, Nick Feamster, and

Alex C Snoeren. Quantifying the benefits of joint

content and network routing. In Proceedings of the
ACM SIGMETRICS/international conference on Mea-
surement and modeling of computer systems, pages 243–

254, 2013.

[36] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon

Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,

Jim Wanderer, Junlan Zhou, Min Zhu, et al. B4: Expe-

rience with a globally-deployed software defined wan.

ACM SIGCOMM Computer Communication Review,

43(4):3–14, 2013.

[37] Ted Hardie. Rfc3258: Distributing authoritative name

servers via shared unicast addresses, 2002.

[38] Ashley Flavel, Pradeepkumar Mani, David Maltz, Nick

Holt, Jie Liu, Yingying Chen, and Oleg Surmachev. Fas-

troute: A scalable load-aware anycast routing architec-

ture for modern cdns. In 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
15), pages 381–394, 2015.

[39] Fangfei Chen, Ramesh K Sitaraman, and Marcelo Tor-

res. End-user mapping: Next generation request routing

for content delivery. ACM SIGCOMM Computer Com-
munication Review, 45(4):167–181, 2015.

[40] David Chou, Tianyin Xu, Kaushik Veeraraghavan, An-

drew Newell, Sonia Margulis, Lin Xiao, Pol Mauri Ruiz,

Justin Meza, Kiryong Ha, Shruti Padmanabha, et al.

Taiji: managing global user traffic for large-scale inter-

net services at the edge. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages 430–

446, 2019.

[41] Changhoon Kim, Anirudh Sivaraman, Naga Katta, An-

tonin Bas, Advait Dixit, and Lawrence J Wobker. In-

band network telemetry via programmable dataplanes.

In ACM SIGCOMM, volume 15, 2015.

[42] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang

Li, Gianni Antichi, Minian Yu, and Michael Mitzen-

macher. Pint: Probabilistic in-band network telemetry.

In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols
for computer communication, pages 662–680, 2020.

[43] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, and Alex C

Snoeren. Passive realtime datacenter fault detection and

localization. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), pages

595–612, 2017.

[44] Arjun Roy, Rajdeep Das, Hongyi Zeng, Jasmeet Bagga,

and Alex C Snoeren. Understanding the limits of pas-

sive realtime datacenter fault detection and localization.

IEEE/ACM Transactions on Networking, 27(5):2001–

2014, 2019.

[45] Junzhi Gong, Yuliang Li, Bilal Anwer, Aman Shaikh,

and Minlan Yu. Microscope: Queue-based performance

diagnosis for network functions. In Proceedings of the
Annual conference of the ACM Special Interest Group on
Data Communication on the applications, technologies,
architectures, and protocols for computer communica-
tion, pages 390–403, 2020.

[46] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu.

Flowradar: A better netflow for data centers. In NSDI,
2016.

[47] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu.

Lossradar: Fast detection of lost packets in data center

networks. In Proceedings of the 12th International on
Conference on emerging Networking EXperiments and
Technologies, pages 481–495, 2016.

[48] Yu Zhou, Chen Sun, Hongqiang Harry Liu, Rui Miao,

Shi Bai, Bo Li, Zhilong Zheng, Lingjun Zhu, Zhen

Shen, Yongqing Xi, et al. Flow event telemetry on pro-

grammable data plane. In Proceedings of the Annual
conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, ar-
chitectures, and protocols for computer communication,

pages 76–89, 2020.

[49] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger,

Vyas Sekar, and Vladimir Braverman. One sketch to

rule them all: Rethinking network flow monitoring with

univmon. In Proceedings of the 2016 conference on
ACM SIGCOMM 2016 Conference. ACM, 2016.

[50] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi

Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve

Uhlig. Elastic sketch: Adaptive and fast network-wide

measurements. In Proceedings of the 2018 ACM SIG-
COMM Conference. ACM, 2018.

[51] Yikai Zhao, Kaicheng Yang, Zirui Liu, Tong Yang,

Li Chen, Shiyi Liu, Naiqian Zheng, Ruixin Wang, Hanbo

Wu, Yi Wang, et al. Lightguardian: A full-visibility,

lightweight, in-band telemetry system using sketchlets.

In NSDI, pages 991–1010, 2021.

[52] Kaicheng Yang, Yuhan Wu, Ruijie Miao, Tong Yang,

Zirui Liu, Zicang Xu, Rui Qiu, Yikai Zhao, Hanglong Lv,

Zhigang Ji, and Gaogang Xie. Chamelemon: Shifting

measurement attention as network state changes. In

Proceedings of the 2023 ACM SIGCOMM Conference.

ACM, 2023.

[53] Qun Huang, Haifeng Sun, Patrick PC Lee, Wei Bai, Feng

Zhu, and Yungang Bao. Omnimon: Re-architecting

network telemetry with resource efficiency and full ac-

curacy. In Proceedings of the Annual conference of
the ACM Special Interest Group on Data Communica-
tion on the applications, technologies, architectures, and
protocols for computer communication, pages 404–421,

2020.

[54] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong

Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,

Bin Pang, Hua Chen, et al. Pingmesh: A large-scale

system for data center network latency measurement

and analysis. In ACM SIGCOMM CCR, volume 45.

ACM, 2015.

[55] Masoud Moshref, Minlan Yu, Ramesh Govindan, and

Amin Vahdat. Trumpet: Timely and precise triggers in

data centers. In Proceedings of the 2016 conference on
ACM SIGCOMM 2016 Conference. ACM, 2016.

[56] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu,

Hongqiang Harry Liu, Jitu Padhye, Boon Thau Loo,

and Geoff Outhred. 007: Democratically finding the

cause of packet drops. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
18), pages 419–435, 2018.

[57] Behnaz Arzani, Selim Ciraci, Boon Thau Loo, Assaf

Schuster, and Geoff Outhred. Taking the blame game out

of data centers operations with netpoirot. In Proceedings
of the 2016 ACM SIGCOMM Conference, pages 440–

453, 2016.

[58] Raj Joshi, Ting Qu, Mun Choon Chan, Ben Leong, and

Boon Thau Loo. Burstradar: Practical real-time mi-

croburst monitoring for datacenter networks. In Pro-
ceedings of the 9th Asia-Pacific Workshop on Systems,

pages 1–8, 2018.

[59] Xin Wu, Daniel Turner, Chao-Chih Chen, David A

Maltz, Xiaowei Yang, Lihua Yuan, and Ming Zhang.

Netpilot: Automating datacenter network failure miti-

gation. In Proceedings of the ACM SIGCOMM 2012
conference on Applications, technologies, architectures,
and protocols for computer communication, pages 419–

430, 2012.

[60] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg,

Guohan Lu, Ratul Mahajan, Dave Maltz, Lihua Yuan,

Ming Zhang, Ben Y Zhao, et al. Packet-level telemetry

in large datacenter networks. In Proceedings of the
2015 ACM Conference on Special Interest Group on
Data Communication, pages 479–491, 2015.

[61] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang,

Haitao Wu, Karl Deng, Dongming Bi, and Dong Xiang.

Netbouncer: Active device and link failure localization

in data center networks. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
19), pages 599–614, 2019.

[62] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feam-

ster, Jennifer Rexford, and Walter Willinger. Sonata:

Query-driven streaming network telemetry. In Proceed-
ings of the 2018 conference of the ACM special interest
group on data communication, pages 357–371, 2018.

[63] Praveen Tammana, Rachit Agarwal, and Myungjin Lee.

Simplifying datacenter network debugging with path-

dump. In 12th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 16), pages 233–

248, 2016.

A Real-world Case Studies
To better illustrate the workflow of AAsclepius, we present

several typical faults as case studies.

Figure 18: A typical outbound fault.

Figure 19: A typical inbound fault.

Figure 20: A typical bidirectional fault.

A typical outbound fault: Figure 18 plots the packet loss

rates of QoS monitoring, debug monitoring9, and VM moni-

toring during a typical outbound fault. The monitoring sub-

system identifies a victim-AS at 14:00 at the first time, and

reports the fault at 14:03. The diagnosing subsystem then

identifies its fault category as a middle fault. The loss rate

of debug monitoring keeps about 10%, which is similar to

that of QoS monitoring. Therefore, the diagnosing subsystem

identifies the middle fault as an outbound fault. The detouring

subsystem detours the victim traffic at 14:08, and we can see

the loss rate of VM monitoring suddenly decreases to almost

0%. In summary, the packet loss rate of VM monitoring de-

creases from up to 12.5% to almost 0% within 8 minutes. The

outbound fault ends at 15:07, and the diagnosing subsystem

detours the traffic back at 15:17, which is not plotted here.

A typical inbound fault: Figure 19 plots the packet loss rates

of QoS monitoring, debug monitoring, and VM monitoring

during a typical inbound fault. The monitoring subsystem

identifies a victim-AS at 16:17 at the first time, and reports

9We call the monitoring process performed by debugging agent in PathDe-

bugging as debug monitoring for short.

the fault at 16:20. The diagnosing subsystem then identifies its

fault category as a middle fault. The packet loss rate of debug

monitoring keeps less than 1%. Therefore, the diagnosing

subsystem identifies the middle fault as an inbound fault. As

we disable the automatic detouring for inbound faults, this

fault is not circumvented, and the packet loss rate of VM

monitoring keeps similar to QoS monitoring.

A typical bidirectional fault: Figure 20 plots the packet

loss rates of QoS monitoring, debug monitoring, and VM

monitoring during a typical bidirectional fault. This fault is a

large-scale fault involving tens of victim-AS’es, and we just

present one of them. The monitoring subsystem identifies

the victim-AS at 20:57 at the first time, and reports the fault

at 21:00. The diagnosing subsystem then identifies its fault

category as a middle fault. The packet loss rate of the debug

monitoring keeps around 15%, which is about 10% lower

than that of the QoS monitoring. Therefore, the diagnosing

subsystem identifies the middle fault as a bidirectional fault.

The detouring subsystem detours the outbound traffic at 21:09,

and the packet loss rate of VM monitoring decreases from

about 20% to 10%. Due to the large scale of this fault, network

operators manually detour the inbound traffic at 21:11, and the

packet loss rate of VM monitoring decreases to less than 1%

at 21:20. In summary, the packet loss rate of VM monitoring

decreases from 30% to less than 1% within 20 minutes.

