
CAFE: Towards Compact, Adaptive, and Fast Embedding for
Large-scale Recommendation Models

HAILIN ZHANG∗, Peking University, China
ZIRUI LIU∗, Peking University, China
BOXUAN CHEN, Peking University, China
YIKAI ZHAO, Peking University, China

TONG ZHAO, Peking University, China
TONG YANG†, Peking University, China
BIN CUI†, Peking University, China

Recently, the growing memory demands of embedding tables in Deep Learning Recommendation Models

(DLRMs) pose great challenges for model training and deployment. Existing embedding compression solutions

cannot simultaneously meet three key design requirements: memory efficiency, low latency, and adaptability to

dynamic data distribution. This paper presentsCAFE, aCompact,Adaptive, and Fast Embedding compression

framework that addresses the above requirements. The design philosophy of CAFE is to dynamically allocate

more memory resources to important features (called hot features), and allocate less memory to unimportant

ones. In CAFE, we propose a fast and lightweight sketch data structure, named HotSketch, to capture feature

importance and report hot features in real time. For each reported hot feature, we assign it a unique embedding.

For the non-hot features, we allow multiple features to share one embedding by using hash embedding

technique. Guided by our design philosophy, we further propose a multi-level hash embedding framework

to optimize the embedding tables of non-hot features. We theoretically analyze the accuracy of HotSketch,

and analyze the model convergence against deviation. Extensive experiments show that CAFE significantly

outperforms existing embedding compression methods, yielding 3.92% and 3.68% superior testing AUC on

Criteo Kaggle dataset and CriteoTB dataset at a compression ratio of 10000×. The source codes of CAFE are

available at GitHub [75].

CCS Concepts: •Computingmethodologies→Artificial intelligence; • Information systems→Online
advertising; • Theory of computation→ Sketching and sampling.

Additional Key Words and Phrases: Embedding, Deep Learning Recommendation Model, Sketch

∗
Both authors contributed equally to this research.

†
Bin Cui and Tong Yang are the corresponding authors.

Authors’ addresses: Hailin Zhang, z.hl@pku.edu.cn, School of Computer Science & Key Lab of High Confidence Software

Technologies, Peking University, Beijing, China; Zirui Liu, zirui.liu@pku.edu.cn, School of Computer Science & Key Lab of

High Confidence Software Technologies, Peking University, Beijing, China; Boxuan Chen, 2100012923@stu.pku.edu.cn,

School of Electronics Engineering and Computer Science, Peking University, Beijing, China; Yikai Zhao, zyk@pku.edu.cn,

School of Computer Science & Key Lab of High Confidence Software Technologies, Peking University, Beijing, China; Tong

Zhao, zhaotong@pku.edu.cn, School of Computer Science, Peking University, Beijing, China; Tong Yang, yangtongemail@

gmail.com, School of Computer Science & Key Lab of High Confidence Software Technologies, Peking University, Beijing,

China; Bin Cui, bin.cui@pku.edu.cn, School of Computer Science & Key Lab of High Confidence Software Technologies &

Institute of Computational Social Science, Peking University (Qingdao), Peking University, Beijing, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2024/2-ART51

https://doi.org/10.1145/3639306

Proc. ACM Manag. Data, Vol. 2, No. N1 (SIGMOD), Article 51. Publication date: February 2024.

HTTPS://ORCID.ORG/0009-0000-4188-7742
HTTPS://ORCID.ORG/0000-0001-9062-6565
HTTPS://ORCID.ORG/0009-0006-3719-2685
HTTPS://ORCID.ORG/0000-0003-2495-7774
HTTPS://ORCID.ORG/0009-0005-7201-2152
HTTPS://ORCID.ORG/0000-0003-2402-5854
HTTPS://ORCID.ORG/0000-0003-1681-4677
https://orcid.org/0009-0000-4188-7742
https://orcid.org/0000-0001-9062-6565
https://orcid.org/0009-0006-3719-2685
https://orcid.org/0000-0003-2495-7774
https://orcid.org/0009-0005-7201-2152
https://orcid.org/0009-0005-7201-2152
https://orcid.org/0000-0003-2402-5854
https://orcid.org/0000-0003-1681-4677
https://doi.org/10.1145/3639306

51:2 Hailin Zhang, et al.

ACM Reference Format:
Hailin Zhang, Zirui Liu, Boxuan Chen, Yikai Zhao, Tong Zhao, Tong Yang, and Bin Cui. 2024. CAFE: Towards

Compact, Adaptive, and Fast Embedding for Large-scale Recommendation Models. Proc. ACM Manag. Data 2,
N1 (SIGMOD), Article 51 (February 2024), 28 pages. https://doi.org/10.1145/3639306

1 INTRODUCTION
1.1 Background and Motivation
In recent years, embedding techniques are widely applied in various fields in database community,

such as cardinality estimation [31, 39], query optimization [4, 82], language understanding [27],

entity resolution [12, 13], document retrieval [23], graph learning [29, 69], and advertising recom-

mendation [47], to learn the semantic representations of categorical features. Among these fields,

Deep Learning Recommendation Models (DLRMs) are one of the most important applications of

embedding techniques: they account for 35% of Amazon’s revenue in 2018 [7, 60, 66], and consume

more than 50% training and 80% inference cycles at Meta’s data centers in 2020 [21, 50].

As shown in Figure 1, a typical DLRM vectorizes categorical features into learnable embeddings,

and then feeds these embeddings into downstream neural networks along with other numerical

features [5, 22, 44, 51, 56, 73]. Recently, with the exponential increase of categorical features

in DLRM, the memory requirements of embedding tables have also skyrocketed, which creates

formidable storage challenges in various applications [49, 72]. Therefore, it is highly desired to

devise a framework that can effectively compress the embedding tables into limited storage space

without compromising model accuracy. In this paper, we focus on compressing the embedding

tables of extremely large-scale DLRMs.

Fig. 1. Overview of DLRM.

DLRM has two training paradigms: offline training and online training. (1) In offline training,

the training data is collected in advance, and the model is deployed for use after the entire training

process. (2) In online training, the training data is generated in real time, and the model simultane-

ously updates parameters and serves requests. This paper mainly focuses on the scenario of online

training as it is more difficult. Generally, compression methods for online training can be directly

applied to offline training. Embedding compression in online training has three important design

requirements, which are as follows:

• Memory efficiency. For extremely large-scale DLRMs, it is challenging to maintain model

quality within memory constraints. While distributed instances can help manage large-scale

embedding tables, they come with a significant communication overhead [48, 63]. Furthermore,

Proc. ACM Manag. Data, Vol. 2, No. N1 (SIGMOD), Article 51. Publication date: February 2024.

https://doi.org/10.1145/3639306

CAFE: Towards Compact, Adaptive, and Fast Embedding for Large-scale Recommendation Models 51:3

training and deployment of embedding tables often occur on edge or end devices with smaller

storage capacities, making the memory issue even worse [52]. On the other hand, since model

quality directly impacts profits, even a small change of 0.001 in DLRM’s AUC (area under the ROC

curve) is considerable [19]. Existing compression methods often lead to severe model degradation

whenmemory constraints are small [79], emphasizing the need for memory-efficient compression

methods that maintain model quality.

• Low latency. Low latency is a vital requirement in practical applications, as latency is a key

metric of service quality [20]. Embedding compression methods must be fast enough not to

introduce significant latency.

• Adaptability to dynamic data distribution. In online training, the data distribution is not

fixed as in offline training. We calculate the KL divergence (an asymmetric measure of the

distance between distributions) between the feature distributions on each day within three

common public datasets, and plot the heatmaps in Figure 2. In each heatmap, the block in row

𝑖 , column 𝑗 shows the KL divergence between the distributions on day 𝑖 and day 𝑗 . There is a

significant difference between the feature distributions, and generally the greater the number of

days between, the greater the difference. Existing advanced compression methods often exploit

feature frequencies explicitly [17, 74] or capture feature importance implicitly [30, 81], which

are inspired by the observation that feature popularity distributions are highly skewed, fitting

zipfian [72] or powerlaw distributions [77]. However, most of them rely on fixed data distributions

and cannot be applied to dynamic data distributions, demanding new adaptive compression

method suitable for online training.

Fig. 2. KL divergence between distributions on each day.

1.2 Limitations of Prior Art
Existing embedding compression methods can be generally categorized into two types: row com-

pression and column compression. As column compression primarily aims at enhancing model

quality rather than compressing to a specific memory limit, our focus is on row compression,

including hash-based and adaptive methods.

Hash-based methods. These methods utilize simple hash functions to map features into em-

beddings with collisions [58, 64, 68]. They restrict the number of embedding vectors to fit within

the memory budget, causing different features to potentially share an embedding vector when a

hash collision occurs. Despite their simplicity and convenience, which have resulted in widespread

industry use, these methods are not very memory-efficient. Pre-determined hash functions distort

the semantic information of features, often leading to a substantial decline in model accuracy. For

each feature, the gradients of other hash-collided features will be updated to the same embedding,

resulting in deviations from the original convergence direction. Integrating feature frequency

information [74] can enhance hash-based methods’ model quality in offline training but cannot be

applied to online training.

Proc. ACM Manag. Data, Vol. 2, No. N1 (SIGMOD), Article 51. Publication date: February 2024.

51:4 Hailin Zhang, et al.

Adaptive methods. To accommodate online training, adaptive methods distinguish and track

important features throughout the training process. AdaEmbed [34] logs the importance scores of all

features, dynamically reallocates embedding vectors for critical features, and discards embeddings of

less important features. While it can adapt to data distribution, its compression ratio is constrained

by the storage of importance scores, which increases linearly with the total number of features.

Thus, it cannot compress embedding tables to a small memory budget and still needs distributed

training for large models, resulting in low memory efficiency. It also needs to sample and check

data to determine whether to migrate embeddings, which can increase overall latency.

In summary, existing methods fail to meet all three critical requirements for DLRM: memory

efficiency, low latency, and adaptability. In this paper, we aim to propose an embedding compression

method that is memory-efficient, adaptive, and ensures low latency.

1.3 Our Proposed Method
We introduce CAFE, a Compact, Adaptive, and Fast Embedding compression method, which,

to our knowledge, is the first to satisfy all three design requirements. (a) Memory efficiency:
CAFE allocates unique embedding vectors to important features and shared embedding vectors

to less important features, thereby preserving model quality. A light-weight sketch, HotSketch,

distinguishes these features, with its memory usage being linear to the number of important

features, enabling high compression ratios. Consequently, CAFE manages to maintain good model

quality within tight memory constraints. (b) Low latency: CAFE entails only several hash processes

and potentially one additional embedding lookup, incurring negligible time overhead beyond the

standard embedding layers and thus maintaining low latency during serving. (c) Adaptability to
dynamic data distribution: CAFE incorporates an embedding migration process that takes effect

when a feature’s importance score changes, ensuring that vital features are always identified even

when data distribution changes during online training. On Criteo dataset, compared to existing

methods, CAFE improves the model AUC by 1.79% and reduces the training loss by 2.31% on

average.

To achieve a high compression ratio without compromising model quality, we utilize a sketch

structure to distinguish and record important features from a highly skewed Zipf distribution.

Sketches are a class of probabilistic data structures for processing large-scale data streams, and

are naturally suitable for handling streamed features in online training. Specifically, we extend

SpaceSaving Sketch [59], an advanced sketch algorithm with small error, to design HotSketch, a less

memory-consuming structure to store important DLRM features with a theoretically guaranteed

error bound. Being a light-weight data structure, HotSketch incurs negligible time overhead,

facilitating fast training and inference. Since HotSketch’s memory usage is only linear to the number

of important features, CAFE can compress to any given memory constraints. With HotSketch, we

allocate unique embeddings to a handful of important features and shared embeddings to a vast

majority of long-tail features, achieving memory efficiency.

To adapt CAFE to online training, where important features can change dynamically, we enable

features to migrate between unique and shared embedding tables. If a feature’s importance score

exceeds a relative threshold in HotSketch, it is deemed important and allocated a unique embedding.

Conversely, if a feature’s importance score drops below a relative threshold, its unique embedding

migrates to the shared embedding table.

To further optimize CAFE, we divide features into more groups by importance scores. While the

most critical features are still allocated unique embeddings, other features are assigned a varying

number of hashed embedding vectors. This multi-level design further improves the model AUC by

0.08% on Criteo dataset.

Proc. ACM Manag. Data, Vol. 2, No. N1 (SIGMOD), Article 51. Publication date: February 2024.

CAFE: Towards Compact, Adaptive, and Fast Embedding for Large-scale Recommendation Models 51:5

1.4 Main Contribution
• We introduce CAFE, a compact, adaptive, and fast embedding compression method.

• We propose HotSketch, a light-weight sketch structure to discern and record features’ importance

scores.

• We provide a theoretical analysis of HotSketch’s effectiveness, and elucidate how CAFE’s design

contributes to the convergence of compressed DLRMs.

• We evaluate CAFE on representative DLRM datasets, achieving 3.92%, 3.68%, 5.16% higher testing

AUC and 4.61%, 3.24%, 11.21% lower training loss at 10000× compression ratio compared to

existing method.

2 PRELIMINARY
In this section, we elaborate on the architecture of DLRMs in Section 2.1 and provide a formal

definition of the embedding compression problem in Section 2.2.

2.1 DLRM
Figure 1 illustrates the overall architecture of DLRM. Each dataset of DLRM has several categorical

feature fields and numerical feature fields. For example, in Figure 1, gender, user ID and interest are

categorical fields, while price and score are numerical fields. Each field has a certain number or a

certain range of possible values, called features. Categorical and numerical features are transformed

into representations using embedding vectors and fully-connected layers, respectively. The repre-

sentations are then fed into interaction layers and fully-connected layers for final predictions. The

prediction may be a category for classification tasks such as click-through-rate and conversion-rate

prediction, or a score for regression tasks such as score prediction. There are many variants of

DLRM, such as WDL [5], DCN [61], DIN [83]; while they all utilize the same embedding layer,

they explore different forms of interaction layers and neural network layers to enhance model

performance.

The size of a DLRM does not depend on the model structure, but on the number of unique

categorical features in the dataset. The model parameters of DLRMs can be divided into two parts:

the embedding table and the neural network. The former contains embeddings for all categorical

features, i.e., one embedding per feature if uncompressed. The latter is a network that interacts

these embeddings and outputs predictions. The number of parameters in the embedding table

depends on the dataset: if there are 𝑛 unique categorical features in the dataset, and the dimension

of embeddings is 𝑑 , then the number of parameters is 𝑛×𝑑 . In DLRMs, the size of the neural network

part (just a few layers of matrix multiplication) is negligible compared to large embedding tables.

Based on previous research works [25, 38, 49, 65, 80], we consider DLRMs with more than 100

million parameters as large-scale, and DLRMs with more than 10 billion parameters as extremely

large-scale.

In DLRMs, categorical features are viewed as one-hot vectors where only the 𝑖-th position is set

to 1 and the rest are set to 0, facilitating the retrieval of the corresponding row vector from the

embedding table. Each input data, sampled from distribution D, contains categorical features 𝑥𝑐𝑎𝑡 ,

numerical features 𝑥𝑛𝑢𝑚 , and a label 𝑦. We denote 𝐸 as the embedding tables and 𝑓 as the other

neural network layers, then the process of minimizing the loss can be formulated as follows:

min

𝐸,𝑓
E(𝑥𝑐𝑎𝑡 ,𝑥𝑛𝑢𝑚,𝑦)∼DL(𝑦, 𝑓 (𝐸 (𝑥𝑐𝑎𝑡), 𝑥𝑛𝑢𝑚)) . (1)

Proc. ACM Manag. Data, Vol. 2, No. N1 (SIGMOD), Article 51. Publication date: February 2024.

51:6 Hailin Zhang, et al.

In each iteration, after the forward pass, an optimizer such as Adam [28] is applied to update

the embedding table and other parameters. Frequently used notations in this paper are detailed in

Table 1.

Table 1. Symbols frequently used in this paper.

Symbol Meaning Symbol Meaning

D Distribution of input data 𝜃 Learnable parameters

D𝑡 Shifting distribution of input data at time 𝑡 𝛼 Learning rate

𝑛 Number of unique categorical features 𝑔 Standard gradient without compression

𝑑 Embedding dimension 𝑔 Gradient in compressed DLRM

𝑥𝑐𝑎𝑡 Categorical feature L Loss function

𝑥𝑛𝑢𝑚 Numerical feature M Memory usage (of the embedding table)

𝑦 Ground truth label 𝑀 Memory budget

�̂� Prediction 𝐶𝑅 Compression ratio

𝐸 Embedding table 𝑤 Number of buckets in HotSketch

𝐸∗
Compressed embedding table 𝑐 Number of slots in each bucket in HotSketch

𝑓 Neural network 𝑘 Number of hot features

2.2 Embedding Compression
Embedding compression is mainly conducted within a memory constraint. Denoting 𝑀 as the

memory budget of the embedding table, M as the memory function mapping an embedding table

to corresponding memory usage, and 𝐸∗ as the compressed embedding table, the optimization of

DLRM within a memory constraint is formulated as follows:

min

𝐸∗,𝑓
E(𝑥𝑐𝑎𝑡 ,𝑥𝑛𝑢𝑚,𝑦)∼DL(𝑦, 𝑓 (𝐸∗ (𝑥𝑐𝑎𝑡), 𝑥𝑛𝑢𝑚)),

s.t.M(𝐸∗) ≤ 𝑀.
(2)

The memory function excludes the memory usage of neural networks since it is fixed and

negligible compared to the memory usage of embedding tables.

We define compression ratio as the multiple of the original memory to the compressed memory,

to reflect the degree of compression: 𝐶𝑅 =
M(𝐸)
M(𝐸∗) . In practical applications, using a compression

ratio of 10× can reduce the cost of distributed deployment, 100× to 1000× can allow for single-device

deployment, and an extreme compression ratio of 10000× can enable DLRMs on edge devices.

For online training, the fixed data distribution D in the above definition can be modified to a

variable distribution D𝑡 , which is continuously evolving over time 𝑡 .

3 CAFE DESIGN
3.1 CAFE Overview
Rationale:We design CAFE, an efficient embedding framework that is simultaneously compact,

adaptive, and fast. The key idea of CAFE is to dynamically distinguish important features (called

hot features) from unimportant ones (called non-hot features), and allocate more resources to

hot features. Specifically, we define the importance score of a feature using the L2-norm of its

gradient, which is proven to have good theoretical properties in Section 3.5.2 and also in previous

works [18, 26, 34]. We further experimentally demonstrate the effectiveness of gradient norms

in Section 5.3. We observe that in most training data, the feature importance follows a highly

skewed distribution, where most features have small importance scores and only a small fraction

Proc. ACM Manag. Data, Vol. 2, No. N1 (SIGMOD), Article 51. Publication date: February 2024.

CAFE: Towards Compact, Adaptive, and Fast Embedding for Large-scale Recommendation Models 51:7

of hot features are very important. For example, Figure 3 illustrates that the feature importance

distributions in Criteo dataset and CriteoTB dataset are highly consistent with Zipf distributions of

parameters 1.05 and 1.1, respectively. Therefore, if we can allocate more memory to the embeddings

of hot features and less memory to those of non-hot features, it is possible to significantly improve

the model quality under the same memory usage of embedding tables.

(a) Criteo. (b) CriteoTB.

Fig. 3. Comparing gradient norm and Zipf distributions.

As shown in Figure 4, in CAFE, we propose a novel sketch algorithm, called HotSketch, to capture

feature importance and report top-𝑘 hot features in real time (Section 3.2). In each training iteration,

we first fetch data samples from the input training data, and query each feature from these samples

in HotSketch. For each feature, HotSketch reports its current importance score, and if its score

exceeds a predefined threshold, we regard it as a hot feature. We then lookup the embeddings

for hot and non-hot features respectively. In CAFE, for each hot feature, we allocate a unique

embedding, and we store the pointer to this embedding in HotSketch. For the non-hot features, we

use hash embedding tables where multiple features can share one embedding. We will discuss how

to migrate embeddings between the tables of hot and non-hot features (Section 3.3). Guided by our

design philosophy, we further propose a multi-level hash embedding framework to better embrace

the skewed feature importance distribution (Section 3.4). Afterwards, we feed the embeddings into

the downstream neural network for prediction and get the gradient norm for each feature. Finally,

we update the importance of these features in HotSketch using their gradient norms.

Fig. 4. Overview of CAFE.

Proc. ACM Manag. Data, Vol. 2, No. N1 (SIGMOD), Article 51. Publication date: February 2024.

51:8 Hailin Zhang, et al.

3.2 The HotSketch Algorithm
Rationale: We design HotSketch to capture hot features with high importance scores in a sin-

gle pass, which is essentially a problem of finding top-𝑘 frequent items (features) in streaming

data. Currently, Space-Saving [45] is the most recognized algorithm for solving top-𝑘 problem.

It maintains frequent items in sorted doubly linked list and uses a hash table to index this list.

However, this hash table not only doubles the memory usage but also imposes time inefficiency due

to numerous memory accesses caused by pointer operations. Based on the idea of Space-Saving, we

propose HotSketch, which removes the hash table while still maintaining the𝑂 (1) time complexity.

We theoretically prove that our HotSketch well inherits the theoretical results of Space-Saving

(Section 3.5.1), and empirically validate the performance of HotSketch (Section 5.6).

Data structure:As depicted in Figure 5, HotSketch consists of an array of𝑤 bucketsB[1], · · · ,B[𝑤].
We use a hash function ℎ(·) to map each feature into one bucket. Each bucket contains 𝑐 slots. Each

slot stores a feature ID and its importance score.

Insertion: For each incoming feature 𝑓𝑖 associated with an importance score 𝑠𝑖 , we first calculate

the hash function to locate a bucket B[ℎ(𝑓𝑖)], termed as the hashed bucket of 𝑓𝑖 . Then, we check

bucket B[ℎ(𝑓𝑖)] and encounter three possible scenarios: (1) 𝑓𝑖 is recorded in B[ℎ(𝑓𝑖)]. We add 𝑠𝑖 to

its importance score. (2) 𝑓𝑖 is not recorded in B[ℎ(𝑓𝑖)] and there exists an empty slot in B[ℎ(𝑓𝑖)].
We insert 𝑓𝑖 into the empty slot by setting this slot to (𝑓𝑖 , 𝑠𝑖). (3) 𝑓𝑖 is not recorded in B[ℎ(𝑓𝑖)]
and B[ℎ(𝑓𝑖)] is full. We locate the feature with the smallest score (𝑓𝑚𝑖𝑛, 𝑠𝑚𝑖𝑛), replace 𝑓𝑚𝑖𝑛 with 𝑓𝑖 ,

and add 𝑠𝑖 to 𝑠𝑚𝑖𝑛 . In other words, we set the slot (𝑓𝑚𝑖𝑛, 𝑠𝑚𝑖𝑛) to (𝑓𝑖 , 𝑠𝑚𝑖𝑛 + 𝑠𝑖). Figure 5 shows an
example of insertion.

Discussion: HotSketch has the following advantages: (1) HotSketch has fast insertion speed.

It processes each feature in a one-pass manner and has an 𝑂 (1) time complexity. In addition,

HotSketch avoids complicated pointer operations and has only one memory access. (2) HotSketch

is memory-efficient. It does not store pointers, and there are no empty slots in HotSketch after a

brief cold start. (3) HotSketch is hardware-friendly and can be accelerated with multi-threading

and SIMD, thereby achieving superior data parallelism.

Fig. 5. The HotSketch algorithm.

Proc. ACM Manag. Data, Vol. 2, No. N1 (SIGMOD), Article 51. Publication date: February 2024.

CAFE: Towards Compact, Adaptive, and Fast Embedding for Large-scale Recommendation Models 51:9

3.3 Migration Strategy
During the online training of DLRMs, the distribution of feature importance fluctuates with data

distribution changes, meaning that the hot features are not constant throughout the training process.

Since HotSketch already records the feature importance during training, it can naturally support

dynamic hot features by embeddings migration between uncompressed and hash embedding tables.

In HotSketch, we set a threshold to distinguish hot features, and the entry and exit of hot features

occur throughout the training process. Almost every feature that reaches HotSketch for the first

time is considered a non-hot feature with a low importance score. When a non-hot feature’s

importance score surpasses the threshold, it transitions into a hot feature, and its embedding

migrates from the shared table to the uncompressed table as initialization, ensuring the feature’s

representation remains smooth throughout the training process. Conversely, when a hot feature’s

importance score drops below the threshold (by eviction or decay), it becomes a non-hot feature,

and its embedding is discarded from the uncompressed table. Considering that the newly migrated

non-hot feature is no longer important, its original exclusive embedding is simply ignored and the

shared embedding is used instead. The threshold is meticulously set, allowing HotSketch to always

saturate with hot features and adapt to distribution changes. If the importance scores alter rapidly,

we decay the scores periodically.

During training, it’s vital to maintain an appropriate migration frequency. If the migration

occurs too frequently, the learning process may not be smooth enough due to the replacement of

embeddings, and the migration will generate substantial delay. Conversely, if the migration occurs

too infrequently, HotSketch cannot capture changes in the distribution, leading to a decline in

model quality. By setting a suitable threshold in HotSketch, a moderate migration frequency can

enable the model to adapt to changes in distribution without negatively impacting convergence

and latency.

3.4 Multi-level Hash Embedding
In HotSketch, features are categorized into hot and non-hot features, with the latter outnumbering

the former, considering typical compression ratios ranging from 10× to 1000×. A substantial number

of non-hot features are treated identically in HotSketch, sharing a hash embedding table with

the same rate of collisions. Given that these features’ importance scores also conform to a highly

skewed Zipf distribution, it’s logical to further segregate non-hot features based on their importance

scores and assign different hash embedding tables to them. Therefore, we integrate multi-level

hash embedding, as shown in Figure 6.

With multi-level hash embedding, we partition non-hot features into more refined categories

of different importance levels, and assign to them different number of embeddings from multiple

tables. For simplicity, we focus on 2-level hash embedding, where non-hot features are divided into

medium features and cold features. We expand the functionality of HotSketch to identify medium

features by estimating their importance scores. Since medium features are more significant, they

reference 2 embedding vectors from 2 distinct hash embedding tables, while cold features only look

up a single embedding vector. This design draws inspiration from prior hash-based methods [74]

that also adopt multiple embedding vectors to enrich representations and boost model quality.

We illustrate the multi-level embedding process using an example in Figure 6. (1) Input features

𝑓1, 𝑓2, 𝑓3 are fed into HotSketch. Among them 𝑓1 has a score larger than the hot threshold, 𝑓2 has

a score above the medium threshold, and 𝑓3 has a score lower than the thresholds, so they are

classified as hot, medium, and cold features respectively. (2) Hot and cold features look up the

embedding vectors as before. (3) Medium feature 𝑓2 looks up two embedding vectors from two hash

embedding tables, and obtains the final embedding through a pooling process. To ensure that the

Proc. ACM Manag. Data, Vol. 2, No. N1 (SIGMOD), Article 51. Publication date: February 2024.

51:10 Hailin Zhang, et al.

Fig. 6. Overview of multi-level hash embedding.

training process remains smooth, the hash function is combined with hash tables. When a feature

is migrated between middle and cold classes, it always retrieves the same embedding vector from

the first embedding table. For pooling operation, in practice, we find that simple summation of

embeddings performs well, since a feature’s embedding vectors are always updated in the same

direction.

The design of themulti-level hash embedding is based on the observation that a unique embedding

is a comprehensive representation with no information loss, whereas, for hash embeddings, the

larger the number of embeddings involved, the fewer the collisions and the more information

a feature can retain. Through experiments detailed in Section 5.4, we find that multi-level hash

embedding performs better, with a reduction of 0.25% in training loss and an increase of 0.08% in

testing AUC.

3.5 Theoretical Analysis
3.5.1 Accuracy of HotSketch.
In this section, we theoretically analyze the performance of HotSketch in finding hot features. We

derive the probability that a hot feature with a large importance score is recorded in HotSketch.

Theorem 3.1. Given a data stream with 𝑛 features, and suppose their importance score vector is
𝑎 = {𝑎1, 𝑎2, · · · , 𝑎𝑛}, where 𝑎1 ⩾ 𝑎2 ⩾ · · · ⩾ 𝑎𝑛 . Suppose that our HotSketch has𝑤 buckets, and each
bucket contains 𝑐 cells. Without distribution assumption, for a hot feature with a total score larger
than 𝛾 ∥𝑎∥1, it can be held in HotSketch with probability at least: Pr > 1 − 1−𝛾

(𝑐−1)𝛾𝑤 .

Proof. The expected score sum of the other features
ˆ𝑓 entering the same bucket is: 𝐸

[
ˆ𝑓

]
=

(1−𝛾) ∥𝑎∥
𝑤

.

By following the properties of SpaceSaving algorithm, if the score
ˆ𝑓 of the other features entering

the bucket is no more than (𝑐 − 1)𝛾 ∥𝑎∥1, then the feature must be held in the bucket. Using Markov

inequality, we have Pr

(
ˆ𝑓 > (𝑐 − 1)𝛾 ∥𝑎∥1

)
⩽

1−𝛾
(𝑐−1)𝛾𝑤 , which means that Pr > 1 − 1−𝛾

(𝑐−1)𝛾𝑤 . □

Lemma 3.2. Given a data stream with score vector 𝑎 = {𝑎1, 𝑎2, · · · , 𝑎𝑛}, where 𝑎1 ⩾ 𝑎2 ⩾ · · · ⩾ 𝑎𝑛 .
Suppose that 𝑎 follows a Zipfian distribution with parameter 𝑧, meaning that 𝑎𝑖 = 𝑎1

𝑖𝑧
. Suppose our

HotSketch has𝑤 buckets, and each bucket contains 𝑐 cells. Suppose we would like to check whether the
𝑘 ′ hottest features can be hashed into the buckets. Then the mathematical expectation of the score sum

Proc. ACM Manag. Data, Vol. 2, No. N1 (SIGMOD), Article 51. Publication date: February 2024.

CAFE: Towards Compact, Adaptive, and Fast Embedding for Large-scale Recommendation Models 51:11

of the non-hot features entering each bucket is: 𝐸 [ˆ𝑓] ⩽ ∥𝑎∥1 ·𝑘 ′1−𝑧

𝑤
with probability at least 3−

𝑘′
𝑤 for

𝑧 > 1 and 𝑛 → +∞.

Proof. The probability that the 𝑘 ′ hottest features are not hashed into this bucket is:
(
1 − 1

𝑤

)𝑘 ′
=((

1 − 1

𝑤

)𝑤) 𝑘′
𝑤 > 3

− 𝑘′
𝑤 .

When𝑤 ⩾ 6,

(
1 − 1

𝑤

)𝑤
increases monotonically with𝑤 . The expected score sum of the non-hot

features entering this bucket is:

𝐸 [ˆ𝑓] =
∑𝑛

𝑖=𝑘 ′+1 𝑎𝑖

𝑤
=

∑𝑛
𝑖=𝑘 ′+1

𝑎1
𝑖𝑧

𝑤
=

∥𝑎∥1
𝑤

·
(

𝑛∑︁
𝑖=𝑘 ′+1

𝑖−𝑧

)
· 1∑𝑛

𝑖=1 𝑖
−𝑧

⩽
∥𝑎∥1
𝑤

·
(∫ +∞

𝑘 ′
𝑥−𝑧𝑑𝑥

)
·
(∫ +∞

1

𝑥−𝑧𝑑𝑥

)−1
⩽
∥𝑎∥1
𝑤

· 𝑘
′1−𝑧

𝑧 − 1

· (𝑧 − 1) = ∥𝑎∥1𝑘 ′1−𝑧
𝑤

for 𝑧 > 1 and 𝑛 → +∞. □

Theorem 3.3. Given a data streamwith score vector𝑎 = {𝑎1, 𝑎2, · · · , 𝑎𝑛}, where𝑎1 ⩾ 𝑎2 ⩾ · · · ⩾ 𝑎𝑛 .
Suppose that 𝑎 follows a Zipfian distribution with parameter 𝑧. Suppose that our HotSketch has 𝑤
buckets, and each bucket contains 𝑐 cells. Let 𝑘 ′ = 𝜂𝑤 . Then for a hot feature with a score larger than
𝛾 ∥𝑎∥1, it can be held in the sketch with probability at least: Pr > 𝑠𝑢𝑝

𝜂>0

(
3
−𝜂 ·

(
1 − 𝜂

(𝑐−1)𝛾 (𝜂𝑤)𝑧
))

for

𝑧 > 1 and 𝑛 → +∞.

Proof. The condition C that none of the 𝑘 ′ hottest features collide with this item holds with

probability at least 3
− 𝑘′

𝑤 .

By following the properties of SpaceSaving algorithm, if the scores
ˆ𝑓 of the other features

entering the bucket is no more than (𝑐 − 1)𝛾 ∥𝑎∥1, then the feature must be held in the bucket.

Using Markov inequality, we have

Pr

(
ˆ𝑓 > (𝑐 − 1)𝛾 ∥𝑎∥1 | C

)
⩽

∥𝑎∥1 ·𝑘 ′1−𝑧

𝑤

(𝑐 − 1)𝛾 ∥𝑎∥1
=

𝑘 ′1−𝑧

(𝑐 − 1)𝛾𝑤 .

Then we have

Pr

(
ˆ𝑓 > (𝑐 − 1)𝛾 ∥𝑎∥1

)
⩽ Pr

(
ˆ𝑓 > (𝑐 − 1)𝛾 ∥𝑎∥1, C

)
+ Pr (¬C)

⩽3−
𝑘′
𝑤 ·

(
𝑘 ′1−𝑧

(𝑐 − 1)𝛾𝑤 − 1

)
+ 1.

Let 𝑘 ′ = 𝜂𝑤 , we have

Pr

(
ˆ𝑓 > (𝑐 − 1)𝛾 ∥𝑎∥1

)
⩽ 3

−𝜂 ·
(

1

𝜂𝑧−1 (𝑐 − 1)𝛾𝑤𝑧
− 1

)
+ 1.

And we have the probability that this feature must be held greater than

Pr > 𝑠𝑢𝑝
𝜂>0

(
3
−𝜂 ·

(
1 − 𝜂

(𝑐 − 1)𝛾 (𝜂𝑤)𝑧

))
.

□

Proc. ACM Manag. Data, Vol. 2, No. N1 (SIGMOD), Article 51. Publication date: February 2024.

51:12 Hailin Zhang, et al.

Corollary 3.4. The larger the parameter 𝑐 ,𝑤 , 𝑧, and 𝛾 , the larger the probability that the feature
with score larger than 𝛾 ∥𝑎∥1 be held in the sketch. The larger 𝑐 and𝑤 means the larger memory used
by sketch, the larger 𝑧 means the more skew the data stream is, and the larger 𝛾 means the hotter the
feature is.

Proof. The following formulamonotonically decreases with parameter 𝑐 ,𝑤 , 𝑧, and𝛾 :
𝜂

(𝑐−1)𝛾 (𝜂𝑤)𝑧 .
□

Corollary 3.5. To let the feature with score larger than 𝛾 ∥𝑎∥1 be held with maximum probability
in a fixed memory budget, the more skew the data stream is, the less cells per bucket should be used.
Specifically, we recommend to use 𝑐 = 1 + 1

𝑧−1 .

Proof. With a fixed memory budget 𝑀 = 𝑐𝑤 , to minimize
𝜂

(𝑐−1)𝛾 (𝜂𝑤)𝑧 , we should maximize

(𝑐 − 1)𝑤𝑧 =
(
𝑀
𝑤
− 1

)
𝑤𝑧 .

As it has a derivative function[(
𝑀

𝑤
− 1

)
𝑤𝑧

] ′
= ((𝑧 − 1)𝑀 − 𝑧𝑤)𝑤𝑧−2,

the optimal𝑤 should be
𝑧−1
𝑧
𝑀 , and the optimal 𝑐∗ should be

𝑐∗ =
𝑧

𝑧 − 1

= 1 + 1

𝑧 − 1

.

□

Discussion: From Corollary 3.5, we can see that under fixed memory usage (𝑀 = 𝑐𝑤), the optimal

𝑐 is affected by data distribution. Under non-skewed data distribution (small 𝑧), we should use

larger 𝑐 and smaller𝑤 to better approximate the results of basic Space-Saving. Under highly skewed

data distribution (large 𝑧), we should use smaller 𝑐 and larger 𝑤 to lower the impact of hash

collisions between hot features. This might be because under highly skewed data, using small 𝑐 can

already guarantee us to find hot features with high probability. In this scenario, the performance of

HotSketch is mainly affected by hash collisions between hot features. We surprisingly find that

this corollary is consistent with our experimental results in Figure 18(a).

1e-05 2e-05 5e-05 1e-04 2e-04 5e-04 1e-03

γ (hotness)

1.1

1.4

1.7

2.0

z
(s

ke
w

ne
ss

)

0.5
0.6

0.7

0.8

0.9

1.0

Pr
ob
ab
ilit
y

Fig. 7. Numerical analysis for the probability of HotSketch identifying hot features, where the x-axis repre-
sents the hotness of the feature and the y-axis represents the skewness of the feature hotness distribution
(Theorem 3.3).

Proc. ACM Manag. Data, Vol. 2, No. N1 (SIGMOD), Article 51. Publication date: February 2024.

CAFE: Towards Compact, Adaptive, and Fast Embedding for Large-scale Recommendation Models 51:13

Experimental analysis (Figure 7): Although we cannot directly obtain the analytical solution of

Pr from Theorem 3.3, we can give the numerical solution of Pr under different 𝛾 and 𝑧 by numerical

simulation. In our simulation, we set 𝑤 = 10000 and 𝑐 = 4. We can see that larger 𝑧 goes with

higher Pr, showing that HotSketch is more suitable for capturing top-𝑘 features on skewed data

distribution. In addition, larger 𝛾 also goes with higher Pr, showing that hotter features have larger

probability of being captured by HotSketch. The results are consistent with our design goal.

3.5.2 Convergence Analysis against Deviation.
As mentioned in Section 1.2, in hash-based methods, there will be deviations that can hinder

the convergence of embeddings. CAFE aims to minimize the deviation of embedding gradients,

which indeed reflects the deviation of embedding parameters. In this section, we analyze how this

deviation affects the convergence of SGD algorithm. We study the following (non-convex) empirical

risk minimization problem:

min

𝜃 ∈R𝐷
𝑓 (𝜃) = 1

𝑁

𝑁∑︁
𝑖

𝑓𝑖 (𝜃), 𝜃𝑡+1 = 𝜃𝑡 − 𝛼𝑔𝑖𝑡

where 𝛼 is learning rate, 𝑔𝑖𝑡 = ∇𝑓𝑖 (𝜃𝑖𝑡) is the standard gradient without compression, 𝑔𝑖𝑡 is the

practical gradient with compression. We make the assumptions below following [2, 16].

Assumptions. For ∀𝑖 ∈ {1, 2, ..., 𝑁 }, 𝜃, 𝜃 ′ ∈ R𝐷 , we make the following assumptions:

(1. 𝐿-Lipschitz) ∥∇𝑓𝑖 (𝜃) − ∇𝑓𝑖 (𝜃 ′)∥ < 𝐿∥𝜃 − 𝜃 ′∥ ;
(2. Bounded moment) E[∥∇𝑓𝑖 (𝜃)∥] < 𝜎0, E[∥∇𝑓 (𝜃)∥] < 𝜎0;

(3. Bounded variance) E[∥∇𝑓𝑖 (𝜃) − ∇𝑓 (𝜃)∥] < 𝜎 ;

(4. Existence of global minimum) ∃𝑓 ∗𝑠 .𝑡 .𝑓 (𝜃) ≥ 𝑓 ∗ .

Theorem 3.6. Suppose we run SGD optimization with CAFE on DLRMs satisfying the assumptions
above, with 𝜖𝑡 = ∥𝑔𝑖𝑡 − 𝑔𝑖𝑡 ∥ as the deviation of embedding gradients. Assume the learning rate 𝛼
satisfies 𝛼 < 1

𝐿
. After 𝑇 steps, for 𝜃𝑇 which is randomly selected from {𝜃0, 𝜃1, ..., 𝜃𝑇−1}, we have:

E[∥∇𝑓 (𝜃𝑇)∥2] ≤
𝑓 (𝜃0) − 𝑓 ∗

𝑇𝛼 (1 − 𝛼𝐿) +
𝛼 (2𝐿𝜎2 + 𝜎2

0
)

2(1 − 𝛼𝐿) +
(1 + 𝛼2𝐿)∑𝑇−1

𝑡=0 E[𝜖2𝑡]
2𝑇𝛼 (1 − 𝛼𝐿)

The proof is in the supplementary file on our GitHub page [75].

As 𝑇 increases, with a proper learning rate 𝛼 = 𝑂 (1√
𝑇
), the first two terms at the right hand side

of above inequality tend to 0, and the convergence of SGD is mainly influenced by the deviation

𝜖𝑡 . In the scenario of compression, there is no bound for this deviation; yet the design of CAFE is

proposed to minimize the deviation.

Sincewe assign those importance features with exclusive embedding parameters, their parameters

have little deviation; for features sharing embeddings with each other, the deviation is introduced

by the hash collisions. Generally, we cannot directly obtain the deviation of gradients, but according

to the 𝐿-Lipschitz assumption, the deviation of gradients is bounded by the deviation of weights.

As non-hot features share embeddings with each other, the deviation of weights comes from other

features’ gradients, which may disturb the learning direction. Based on this observation, CAFE

choose to use gradient norm as the importance of features. For less important features, their gradient

norms are relatively small, which limits the deviation of weights to some extent.

4 IMPLEMENTATION
We implement CAFE as a plug-in embedding layer module based on PyTorch. It can directly replace

the original Embedding module in any PyTorch-based recommendation models with minor changes.

Proc. ACM Manag. Data, Vol. 2, No. N1 (SIGMOD), Article 51. Publication date: February 2024.

51:14 Hailin Zhang, et al.

Usage examples can be found on our GitHub page [75]. We consider extending CAFE to other

frameworks (TensorFlow, Hetu [46], etc.) in the future.

CAFE Backend: We implement the HotSketch algorithm in C++ to reduce the overall latency, and

implement the rest of CAFE using PyTorch operators. For HotSketch, we set the number of bucket

in HotSketch to the pre-determined number of hot features, with 4 slots per bucket. We use one

sketch structure for all feature fields instead of one sketch per field, because the distribution of hot

features across fields is unclear, which is better handled directly with importance scores.

Fault Tolerance: We register all HotSketch’s states as buffers in CAFE’s PyTorch module, so that

the states can be saved and loaded alongside model parameters. This simple design requires no

additional modifications and enables DLRMwith CAFE to use checkpoints for training and inference.

When training resumes with checkpoints, parameters and states are reloaded simultaneously.

Memory Management: We place the whole HotSketch structure on CPU, since it is not compute-

intensive. Built upon PyTorch operators, CAFE’s embedding module can run on any accelerators

(including CPU, GPU) where PyTorch is supported.

5 EXPERIMENTAL RESULTS
In this section, we conduct experiments on four widely used recommendation datasets and compare

CAFE with existing embedding memory compression methods. We experimentally show that CAFE

satisfies all three requirements. We also design experiments to reflect the effectiveness of HotSketch.

5.1 Experimental Settings
5.1.1 Models and Datasets. We conduct the experiments on three representative recommendation

models DLRM [51]
1
, WDL [5], and DCN [61]. These models are popular in both academia and

industry. All models follow the architecture discussed in Section 2.1, with slight differences in

the neural network part. In DLRM, a cross layer performs dot operations between embeddings,

producing cross terms for subsequent fully-connected (FC) layers; in WDL, embeddings are fed

into a wide network (1 FC layer) and a deep network (several FC layers), and finally the results

are summed together for predictions; in DCN, cross layers multiply the embeddings with their

projected vectors, producing element-level cross terms for subsequent FC layers. Since our method is

essentially an embedding layer plugin, the conclusions can be generalized to other recommendation

models with little effort. We set the configurations of the models as in the original paper.

Table 2. Overview of the datasets.

Dataset #Samples #Features #Fields Dim #Param

Avazu 40,428,967 9,449,445 22 16 150M

Criteo 45,840,617 33,762,577 26 16 540M

KDD12 149,639,105 54,689,798 11 64 3.5B

CriteoTB 4,373,472,329 204,184,588 26 128 26B

We train on three large-scale datasets Avazu [62], Criteo [33], KDD12 [1], and an extremely

large-scale dataset CriteoTB [32]. Criteo Kaggle Display Advertising Challenge Dataset (Criteo) [33]

and Criteo Terabytes Click Logs (CriteoTB) [32] contain 7 and 24 days of ads click-through rate

(CTR) prediction data respectively, which are adopted in MLPerf [54]. Each data sample has 13

numerical fields and 26 categorical fields. For CriteoTB, we set the field’s maximum cardinality

1
In this section, we use the term "DLRM" to refer to this specific model, rather than the abbreviation of general "Deep

Learning Recommendation Model".

Proc. ACM Manag. Data, Vol. 2, No. N1 (SIGMOD), Article 51. Publication date: February 2024.

CAFE: Towards Compact, Adaptive, and Fast Embedding for Large-scale Recommendation Models 51:15

to 4𝑒7, the same as in the MLPerf configuration. Avazu Click-Through Rate Prediction Dataset

(Avazu) [62] and KDD Cup 2012, Track 2 (KDD12) [1] are another two widely-used CTR datasets.

They have no numerical field. Avazu contains 10 days of CTR data with 22 categorical fields. KDD12

has no temporal information, and has 11 categorical fields. For each dataset, we use the appropriate

embedding dimension based on the benchmarks [51, 84] or our experiments on the uncompressed

models. The statistics of the datasets are listed in Table 2. Since the numerical field is not our focus,

we omit it from the table. In Section 5.5, we construct a new dataset with a more significant shift in

data distribution to further validate CAFE’s ability to adapt to changes in data distribution.

5.1.2 Baselines. We compare CAFEwith Hash Embedding [64], Q-R Trick [58], and AdaEmbed [34].

Hash embedding is a simple baseline using only one hash function, providing a lower bound for all

compression methods. Q-R Trick is an improved hash-based method, using multiple hash functions

and complementary embedding tables to reduce the overall collisions. AdaEmbed is an adaptive

method, recording all features’ importance scores and dynamically allocates embedding vectors only

for important features. We also compare with uncompressed embedding tables. In Section 5.2.4, we

compare CAFE with a column compression method MDE [17]. If not specified, the hyperparameters

of the baselines are the same as in the original paper or code.

5.1.3 Hardware Environment. We conduct all experiments on NVIDIA RTX TITAN 24 GB GPU

cards. Since we focus on embedding compression with large compression ratios, we do not incur

distributed training or inference.

5.1.4 Metrics. We employ training loss and testing AUC (area under the ROC curve) to measure

model quality. Specifically, we use the data samples except the last day as the training set, and the

data samples of the last day as the testing set. We use the testing AUC on the last day as the metric

for offline training, and the average loss during training as the metric for online training. We train

one epoch on the training set in chronological order, which is common in industry. Since KDD12

has no temporal information, we randomly shuffle the data and select 90% for training and the rest

for testing. For memory usage, besides embedding tables, we also consider the memory of additional

structures to achieve a fair judgment on memory efficiency. We use latency and throughput to

measure the speed of each method.

5.2 End-to-end Comparison
In this section, we compare CAFE with baseline methods in an end-to-end manner. For large-scale

datasets, we train with compression ratios ranging from 2× to 10000×, while for the CriteoTB
dataset, we train with compression ratios ranging from 10× to 10000×, ensuring the model fits in

the memory.

5.2.1 Metrics v.s. Compression Ratios. We conduct the main experiments on DLRM. The testing

AUC and the training loss of Criteo and CriteoTB under different compression ratios are plotted

in Figure 8, representing the performance of offline and online training respectively. For KDD12,

we only plot the testing AUC in Figure 10(a) since it does not contain temporal information for

online training. For Avazu, given the significant changes in distributions between days as shown in

Figure 2, we focus on the online training performance and plot the training loss in Figure 10(b).

Only CAFE and Hash can compress the embedding tables to extreme 10000× compression ratio,

while Q-R Trick can only compress to around 500× due to its complementary index design, and

AdaEmbed can only compress to 5× in Avazu and Criteo with dimension 16, 20× in KDD12 with

dimension 64, and 50× in CriteoTB with dimension 128. Compared to Hash and Q-R Trick, CAFE is

always closer to ideal result that uses uncompressed embedding tables, showing excellent memory

efficiency. When varying the compression ratio, on Criteo dataset CAFE improves the testing AUC

Proc. ACM Manag. Data, Vol. 2, No. N1 (SIGMOD), Article 51. Publication date: February 2024.

51:16 Hailin Zhang, et al.

by 1.79% and 0.55% compared to Hash and Q-R Trick respectively on average; on CriteoTB dataset

the improvement is 1.304% and 0.427%; on KDD12 dataset the improvement is 1.86% and 3.80%.

CAFE also reduces the training loss by 2.31%, 0.72% on Criteo dataset, 1.35%, 0.59% on CriteoTB

dataset, and 3.34%, 0.76% on Avazu dataset compared to Hash and Q-R Trick, exhibiting better

performance for both offline and online training. The training loss of Hash fluctuates with the

increase of CR on KDD12, which may be due to the instability of the Hash method and a certain

degree of randomness in its embedding sharing. The improvement of CAFE over Hash is greater

with larger compression ratio. Compared to Hash, at 10000× compression ratio, CAFE improves

3.92%, 3.68%, and 5.16% testing AUC on Criteo, CriteoTB, KDD12; CAFE reduces 4.61%, 3.24%, and

11.21% training loss on Criteo, CriteoTB, Avazu. Compared to AdaEmbed, CAFE reaches nearly the

same testing AUC and training loss on Criteo dataset, achieves an increase of 0.04% testing AUC and

a decrease of 0.12% training loss on CriteoTB dataset, achieves an increase of 0.82% testing AUC on

KDD12 dataset and a decrease of 0.83% training loss on Avazu dataset. AdaEmbed can distinguish

hot features with no errors, but it uses much memory for storing importance information of all

features, with less memory for embedding vectors compared to CAFE, leading to comparable results

at small compression ratios.

(a) AUC v.s. CR on Criteo. (b) AUC v.s. CR on CriteoTB. (c) Loss v.s. CR on Criteo. (d) Loss v.s. CR on CriteoTB.

Fig. 8. Metrics v.s. compression ratios.

5.2.2 Metrics v.s. Iterations. We check the convergence process of different methods. Figure 9

shows the metrics on Criteo and CriteoTB throughout iterations during training. Figure 10(c) shows

the training loss on Avazu throughout iterations. We do not plot uncompressed embeddings trained

on CriteoTB because the model cannot be held in our limited memory space. In Figure 9(a)-9(d),

the testing AUC curves tend to increase because the model continues to learn during training and

the data distribution gradually approaches the distribution of the last day testing data. CAFE has

consistently better AUC during training compared to Hash and Q-R Trick. However, CAFE does

not show better performance at the beginning of training compared to AdaEmbed, mainly because

CAFE has a cold-start process to populate HotSketch, where all features are initially non-hot

features. As training progresses, CAFE gradually achieves an AUC comparable to or better than

AdaEmbed. In Figure 9(e)-9(h), and 10(c), the training loss curves fluctuate due to changes in data

distributions. CAFE always has a closer training loss to ideal result than Hash and Q-R Trick on

Criteo and Avazu datasets, showing better online training ability. The training curves of CAFE

and AdaEmbed roughly coincide, since they are both designed for online training. The CriteoTB

dataset is large enough to adequately train various methods, resulting in the loss curves of different

methods being indistinguishable.

5.2.3 Experiments on WDL and DCN. We use another two models, WDL [5] and DCN [61], to

experiment on the extremely large-scale dataset CriteoTB. The results are shown in Figure 11.

Similar to DLRM, CAFE consistently outperforms Hash and Q-R Trick at different compression

Proc. ACM Manag. Data, Vol. 2, No. N1 (SIGMOD), Article 51. Publication date: February 2024.

CAFE: Towards Compact, Adaptive, and Fast Embedding for Large-scale Recommendation Models 51:17

(a) AUC v.s. iter (Criteo 100×). (b) AUC v.s. iter (CriteoTB 100×). (c) AUC v.s. iter (Criteo 5×). (d) AUC v.s. iter (CriteoTB 50×).

(e) Loss v.s. iterations on Criteo (100×). (f) Loss v.s. iterations on CriteoTB (100×).

(g) Loss v.s. iterations on Criteo (5×). (h) Loss v.s. iterations on CriteoTB (50×).

Fig. 9. Metrics v.s. iterations.

(a) AUC v.s. CR on KDD12. (b) Loss v.s. CR on Avazu. (c) Loss v.s. iterations on Avazu (5×).

Fig. 10. Performance on KDD12 and Avazu.

(a) WDL, AUC v.s. CR. (b) WDL, loss v.s. CR. (c) DCN, AUC v.s. CR. (d) DCN, loss v.s. CR.

Fig. 11. WDL and DCN performance on CriteoTB.

Proc. ACM Manag. Data, Vol. 2, No. N1 (SIGMOD), Article 51. Publication date: February 2024.

51:18 Hailin Zhang, et al.

ratios in both testing AUC and training loss. AdaEmbed is the most advanced compression method

for small compression ratios, and CAFE achieves comparable performance to AdaEmbed. The

training loss of Hash is not stable in WDL, possibly due to the instability of the Hash method itself

and a certain degree of randomness in its embedding sharing.

5.2.4 Comparison with Column Compression. We also compare CAFE with MDE [17], a method

that compresses columns of embedding tables instead of rows as in CAFE and other baselines. It

introduces frequency information to allocate different embedding dimensions for different features,

and then uses a trainable matrix to project the raw embeddings to the same final dimension. Since

MDE does not compress the rows, and each feature needs to be assigned at least one dimension,

the overall compression ratio is limited by the original embedding dimension. We plot the results

in Figure 12. We also include a simple row compression baseline Hash for comparison. MDE’s

performance is comparable to Hash on Criteo, but it drops dramatically on CriteoTB. To reduce

the number of projection matrices, MDE simply uses the feature cardinality of the field to derive

the frequency instead of using the actual frequency, which does not effectively utilize important

features. It also significantly reduces the rank of the embedding matrix at large compression ratios,

causing the embedding to lose semantic information. According to the experimental results, CAFE

always outperforms MDE.

(a) AUC v.s. CR on Criteo. (b) AUC v.s. CR on CriteoTB. (c) Loss v.s. CR on Criteo. (d) Loss v.s. CR on CriteoTB.

Fig. 12. Comparison with MDE.

(a) Latency. (b) Throughput.

Fig. 13. Latency and throughput on CriteoTB (10×).

5.2.5 Latency and Throughput. We test the latency and throughput of each method in Figure 13.

The experiments are conducted on CriteoTB dataset with a compression ratio of 10×. We use 2048

batch size for training and 16384 batch size for inference, which is common in real applications.

As the data loading time and the DNN computing time is the same across different methods, the

difference lies in the operations of the embedding layer. Hash requires only an additional modulo

operation compared to uncompressed embedding operations, and is therefore the fastest method

in both training and inference. Q-R Trick is also fast, because it only additionally introduces

Proc. ACM Manag. Data, Vol. 2, No. N1 (SIGMOD), Article 51. Publication date: February 2024.

CAFE: Towards Compact, Adaptive, and Fast Embedding for Large-scale Recommendation Models 51:19

hash processes and the aggregation of embedding vectors. Although MDE introduces matrix

multiplication, it requires fewer memory accesses to obtain the embedding parameters, resulting

in low latency and high throughput. AdaEmbed and CAFE incur reallocation or migration of

embeddings, which are inevitable for dynamic adjustments, leading to higher latency and lower

throughput. AdaEmbed regularly samples thousands of data to determine whether to reallocate,

which introduces a large time overhead. In contrast, CAFE determines the migration in HotSketch

with negligible time overhead. Compared to AdaEmbed, CAFE has 33.97% lower training latency

and 1.20% lower inference latency. Through the further experimental results in Section 5.6, we can

see that HotSketch’s 𝑂 (1) operation time only accounts for a small fraction of the overall time.

5.2.6 Comparison with Offline Separation. We also compare CAFEwith an offline feature separation

version on Criteo dataset. The offline separation version collects all data and makes statistics,

separates hot and non-hot features according to frequency instead of gradient norms, and assigns

embedding tables respectively. It uses the same embedding memory as in CAFE for hot and non-

hot features. As shown in Figure 14(a), two versions achieve nearly the same testing AUC under

several compression ratios. Compared to CAFE, the offline version has no errors in distinguishing

hot features, but it can only use frequency, resulting in comparable performance. Figure 14(b)

and Figure 14(c) show the testing AUC and the training loss throughout the training process at

1000× compression ratio. At the beginning of training, the offline version has better testing AUC

and training loss, because CAFE has a cold-start process to fill in the slots. When the training

process becomes stable, the two training loss curves almost completely coincide. The offline version,

however, cannot be used in practical applications. First, it cannot adapt to online training, where

the frequency information is unknown without recording. Second, in offline training, memory

storage and additional data traversal process are required for statistics, causing much overhead.

In contrast, CAFE naturally supports online and offline training without storing all importance

information, so it can be directly applied in the industry.

(a) AUC v.s. CR. (b) AUC v.s. iter (1000×). (c) Loss v.s. iterations (1000×).

Fig. 14. CAFE v.s. offline feature separation on Criteo dataset.

(a) Memory for hot features. (b) Threshold of hot features. (c) Decay of scores. (d) Design details.

Fig. 15. Experiments of configuration sensitivity on Criteo dataset (1000×).

Proc. ACM Manag. Data, Vol. 2, No. N1 (SIGMOD), Article 51. Publication date: February 2024.

51:20 Hailin Zhang, et al.

5.3 Configuration Sensitivity
In this section, we study the impact of configurations in CAFE. We test different configurations on

the Criteo dataset with a fixed compression ratio of 1000×, as shown in Figure 15.

Memory for hot features. Given a limited memory constraint, we need to split the memory into

three parts: sketch structure, hot features, and non-hot features. We define the term "hot percentage"

as the percentage of memory occupied by sketch structure and hot features, while the rest is used

for non-hot features. Since HotSketch stores 4 times the slots of the number of hot features, with

each slot 3 attributes, the ratio of memory usage between HotSketch and 𝑑 dimension exclusive

embeddings is 12 : 𝑑 . In the Criteo dataset, the dimension is set to 16, so HotSketch occupies 3/7 of
memory in hot percentage. Figure 15(a) shows the testing AUC under different hot percentages,

where “loo” means “leave-one-out”, leaving only one embedding for non-hot features. A small

hot percentage has low memory overhead of HotSketch, and allocate more memory for non-hot

features, while a large hot percentage allocate more memory for hot features. As hot percentage

gradually increases from 0.4 to 1, the testing AUC first rises then drops. When the hot percentage is

small, enlarging hot percentage enables more hot features, contributing to model quality; when the

hot percentage reaches 0.7, CAFE reaches the best testing AUC; when the hot percentage exceeds

0.7, HotSketch brings much overhead, and collisions of non-hot features increase dramatically,

making the testing AUC drop. At the extreme case "leave-one-out", all the non-hot features share

only one embedding, leading to very bad model performance. In practice, we find that setting hot

percentage to around 0.7 is good enough for nearly all compression ratios.

Threshold of hot features. Hot features are distinguished in HotSketch if their importance scores

exceed the threshold. We test different thresholds, and the experimental results are shown in

Figure 15(b). The testing AUC is bad when the threshold is set too high or too low. If the threshold

is set too high, the memory space allocated for hot features cannot be saturated, resulting in waste

of memory and more non-hot features sharing hash embeddings. If the threshold is set too low, the

entry and exit of features will be too frequent, leading to unstable training process. When threshold

is set to 500, CAFE reaches the best model AUC.

Decay of scores. The decay coefficient in HotSketch determines the exit of features. All the

importance scores in HotSketch, after a certain number of iterations, will be multiplied the decay

coefficient to adapt to temporal variation of data distribution. We test different decay coefficients

in Figure 15(c). In general, the smaller the coefficient, the easier it is for hot features to drop out as

non-hot features. In experiments, we find that 0.98 is a proper value for decay coefficient in Criteo

dataset, while smaller or larger decay coefficient both have poor performance. When the decay

coefficient is too small, hot features cannot stay long in HotSketch, makes HotSketch not saturated

and hot features mis-classified to non-hot features. When the decay coefficient is too large, features

continuously occupy slots in HotSketch, even if they are no longer hot features.

Other design details.We experiment on other design details of HotSketch. Currently we maintain

only one exclusive embedding table for all fields, instead of maintaining one embedding table per

field. This design makes hot features more flexible, distributed among fields only according to

importance scores rather than cardinality. Figure 15(d) shows that maintaining only one exclusive

embedding table leads to a substantial increase in model AUC. We also check the effect of using

frequency information as importance score, with a worse testing AUC than gradient norm. Al-

though frequency is a good indicator of feature importance, it has been proved theoretically and

experimentally that gradient norm is better.

Proc. ACM Manag. Data, Vol. 2, No. N1 (SIGMOD), Article 51. Publication date: February 2024.

CAFE: Towards Compact, Adaptive, and Fast Embedding for Large-scale Recommendation Models 51:21

5.4 Multi-level Hash Embedding
In this section, we study the effect of multi-level hash embedding. The experimental results are

shown in Figure 16, where CAFE-ML means CAFE combined with multi-level hash embedding.

Under different compression ratios, CAFE-ML always performs better than CAFE, achieving 0.08%

better testing AUC and reducing 0.25% training loss. CAFE-ML performs especially well with smaller

compression ratios, causing nearly no degradation at 100× compression ratio. This is because CAFE-

ML allocates more memory for multi-level hash embedding tables at small compression ratios,

making the representation of medium features more precise.

(a) AUC v.s. CR. (b) Loss v.s. CR.

Fig. 16. Multi-level hash embedding on Criteo dataset.

5.5 Performance on Processed Dataset
In this section, we construct a new dataset with a more significant shift in data distribution to

further validate CAFE’s ability to adapt to changes in data distribution. Keeping the testing data

unchanged, we select the training data of days 1,4,7,...,22 from CriteoTB to form CriteoTB-1/3

dataset. As shown in Figure 2, generally the greater the number of days between, the greater the

difference between feature distributions. Therefore, CriteoTB-1/3 has a more significant shift in data

distribution. The results are shown in Figure 17. Although all methods exhibit slight performance

degradation compared to CriteoTB, CAFE and AdaEmbed can adapt to changing data distributions

and achieve relatively good results. Figure 17(c) shows that CAFE and AdaEmbed have almost the

same training loss throughout the training process. However, Figure 17(a) and 17(b) indicate that

CAFE actually outperforms AdaEmbed with a slight improvement, demonstrating stronger online

training capabilities.

(a) AUC v.s. CR. (b) Loss v.s. CR. (c) Loss v.s. iterations (50×).

Fig. 17. Experiments on CriteoTB-1/3.

Proc. ACM Manag. Data, Vol. 2, No. N1 (SIGMOD), Article 51. Publication date: February 2024.

51:22 Hailin Zhang, et al.

5.6 HotSketch Performance
Impact of the number of slots per bucket (Figure 18(a), 18(b)): We record the recall and

the throughput of HotSketch with different number of slots per bucket. The experiments use the

number of hot features on Criteo dataset (1000×) as 𝑘 . In Figure 18(a), recall generally increases as

memory becomes larger. According to Corollary 3.5, the best number of slots per bucket locates at

11 to 21 given a Zipf distribution of parameter 1.05 to 1.1. Therefore, 𝑐 = 8 and 𝑐 = 16 exhibit a better

recall than 𝑐 = 4 and 𝑐 = 32. The throughput of serialized Insert (write) and Query (read) shown in

Figure 18(b) is on the order of 1𝑒7, greater than that of DLRM. Considering that we can parallelize

operations in practice, the sketch time is only a small fraction in training and inference. Throughput

drops as the number of slots increases, because more time is spent doing comparisons within

buckets. Trading-off recall and throughput, we adopt 4 slots per bucket in our implementation, as

we find it to be good enough for model quality.

Finding real-time top-𝑘 features (Figure 18(c),18(d)): We conduct experiments to evaluate the

performance of HotSketch on finding two types of real-time hot features in online training: the

up-to-date top-𝑘 features, and the top-𝑘 features in previous time window. These two types of top-𝑘

features change with data distribution during the online training process, and thus can effectively

reflect HotSketch’s capability to adapt dynamic workloads. The experiments are conducted on

Criteo using 6 days of online training data, with a sliding window size of 0.5 day. Figure 18(c)

and 18(d) show the real-time Recall Rate of HotSketch during online training under different

compression ratios. HotSketch always achieves >90% Recall Rate on finding these two types of

top-𝑘 features, meaning that it can well catch up with the changing data distribution.

(a) Recall. (b) Throughput. (c) Recall v.s. days (100×). (d) Recall v.s. days (1000×).

Fig. 18. Experiments on HotSketch.

6 RELATEDWORK
6.1 Embedding Compression
Numerous compression techniques have been proposed for embedding tables, which can be broadly

divided into two categories: row compression and column compression [76]. Row compression

methods, including hash-based methods, adaptive methods, and CAFE, reduce the number of rows

in embedding tables. Column compressionmethods, including quantization, pruning, and dimension

reduction, compress each unique feature’s representation, thereby reducing the number of columns

(or the number of bits) in embedding tables. Since two categories are primarily orthogonal, methods

of different categories can be further combined in DLRMs.

Rowcompressionmethods:Thesemethods aim to reduce the number of rows in embedding tables.

Initial attempts to accommodate large numbers of embeddings within a limited memory space came

from hash-based methods [58, 64, 68], which are widely used in real-world applications. They use

simple hash functions to map categorical features onto a limited number of embeddings, resulting

in different features sharing the same embedding vector in the event of hash collisions. However,

Proc. ACM Manag. Data, Vol. 2, No. N1 (SIGMOD), Article 51. Publication date: February 2024.

CAFE: Towards Compact, Adaptive, and Fast Embedding for Large-scale Recommendation Models 51:23

hash-based methods do not provide theoretical bounds, which can lead to significant degradation in

model quality. AdaEmbed [34] is an adaptive method that identifies and records important features.

It dynamically reallocates embeddings for important features during online training, and achieves

good model accuracy over time. However, its compression ratio is constrained by the storage of

importance information, which scales linearly with the number of features. AdaEmbed’s sampling

and migration strategy also incurs much latency in online training.

Column compression methods:Methods of this category aim to compress the representation

for each unique feature, thereby reducing the number of columns (or the number of bits) in

embedding tables. They borrow techniques from traditional deep learning compression , such as

quantization [36, 67], pruning [10, 30], and dimension reduction [17, 42, 81]. Except for simple

quantization and rule-based dimension reduction, most of these methods incorporate learnable

structures to implicitly capture the importance of features, achieving similar or even better model

accuracy compared to an uncompressed model. Nevertheless, they are unable to compress the

embedding tables to small memory constraints during training. Specifically, quantization has a

fixed compression ratio according to the data type; for example, if INT4 is used for compression,

the compression ratio is fixed at 8× compared to FLOAT32. Generally, pruning and dimension

reduction compress the embedding tables only at inference time, requiring additional memory to

store extra structures during training. They are seldom used in industry, as the memory bottleneck

during training is more severe due to activations and optimizer states. Most of these methods can

only support offline training because they require collected data for multi-stage training, including

pre-training, finetuning, and re-training.

6.2 Sketching Algorithm
Sketch is an excellent probabilistic data structure that can approximately record the statistics of data

streams by maintaining a summary. Thanks to their small memory overhead and fast processing

speed, sketches are widely applied in the realm of streaming data mining [8], database [6, 24, 41, 57],

and network measurement and management [71, 78] to perform various tasks, such as frequency

estimation [8, 9, 14], finding top-𝑘 frequent items [35, 43, 45, 70], and mining special patterns in

streaming data [40]. Existing sketches can be classified into two categories: counter-based sketches

and KV-based sketches.

Counter-based sketches: Typical counter-based sketches include CM [8], CU [14], Count [3],

ASketch [55], and more [9, 15, 37, 53]. The data structures of these sketches usually consist of

multiple arrays, each containing many counters. Each array is associated with one hash function

that maps items into a specific counter in it. For example, the most popular CM sketch [8] comprises

𝑑 counter arrays 𝐶1, · · · ,𝐶𝑑 . For each incoming item 𝑒 , it is hashed into 𝑑 counters in the CM

sketch 𝐶1 [ℎ1 (𝑒)], · · · ,𝐶𝑑 [ℎ𝑑 (𝑒)] with each of the 𝑑 counters incremented by one. To query item

𝑒 , CM sketch returns the minimum counter among 𝐶1 [ℎ1 (𝑒)], · · · ,𝐶𝑑 [ℎ𝑑 (𝑒)]. However, the CM
sketch has overestimated errors due to hash collisions. Other sketches propose various strategies

to reduce this error. For instance, CU sketch [14] only increments the minimum counter among

𝐶1 [ℎ1 (𝑒)], · · · ,𝐶𝑑 [ℎ𝑑 (𝑒)], and Count sketch [3] adds 𝑠 (𝑒) ∈ {+1,−1} to each mapped counter to

achieve unbiased estimation. Despite these improvements, existing counter-based sketches are not

memory efficient for finding top-𝑘 items. They do not distinguish between frequent and infrequent

items, where infrequent items are useless for reporting top-𝑘 items, and recording infrequent items

only increases the error of frequent items. Moreover, they need multiple memory accesses per

insertion, resulting in unsatisfactory insertion speed.

KV-based sketches: Common key-value-based sketches include Space-Saving [45], Unbaised

Space-Saving [59], Lossy Counting [11], HeavyGuardian [70], and more [35, 71, 78]. These sketches

maintain the KV pairs of frequent items in their data structures. For instance, Space-Saving [45]

Proc. ACM Manag. Data, Vol. 2, No. N1 (SIGMOD), Article 51. Publication date: February 2024.

51:24 Hailin Zhang, et al.

and Unbiased Space-Saving [59] use a data structure called Stream-Summary to record frequent

items, which is essentially a doubly-linked list of fixed size, indexed by a hash table. When Stream-

Summary is full and an unrecorded item arrives, Space-Saving replaces the least frequent item with

the incoming one. Based on Space-Saving, Unbiased Space-Saving [59] replaces the least frequent

item with a certain probability, so as to achieve unbiased estimation. Unfortunately, Space-Saving

and Unbiased Space-Saving are not memory and time efficient because of the extra hash table

and complex pointer operations. Another type of KV-based sketches, such as HeavyGuardian [70]

and WavingSketch [35], uses a bucket array data structure, where each bucket stores multiple KV

pairs. These sketches provide satisfactory accuracy for reporting top-𝑘 items and only require one

memory access per insertion, ensuring fast insertion speed.

7 CONCLUSION
In this paper, we propose CAFE, a compact, adaptive, and fast embedding compression method

that fulfills three essential design requirements: memory efficiency, low latency, and adaptability to

dynamic data distribution. We introduce a light-weight sketch structure, HotSketch, to identify

and record the importance scores of features. It incurs negligible time overhead, and its memory

consumption is significantly lower than the original embedding tables. By assigning exclusive

embeddings to a small set of important features and shared embeddings to other less important

features, we achieve superior model quality within a limited memory constraint. To adapt to

dynamic data distribution during online training, we incorporate an embedding migration strategy

based on HotSketch. We further optimize CAFE with multi-level hash embedding, creating finer-

grained importance groups. Experimental results demonstrate that CAFE outperforms existing

methods, with 3.92%, 3.68% higher testing AUC and 4.61%, 3.24% lower training loss at 10000×
compression ratio on Criteo Kaggle and CriteoTB datasets, exhibiting superior performance in both

offline training and online training. The source codes of CAFE are available at GitHub [75].

ACKNOWLEDGMENTS
This work is supported by National Key R&D Program of China (2022ZD0116315), National Natural

Science Foundation of China (U22B2037, U23B2048, 62372009), PKU-Tencent joint research Lab.

REFERENCES
[1] Aden and Yi Wang. 2012. KDD Cup 2012, Track 2. https://kaggle.com/competitions/kddcup2012-track2.

[2] Zeyuan Allen-Zhu. 2017. Natasha: Faster Non-Convex Stochastic Optimization via Strongly Non-Convex Parameter.

In Proceedings of the 34th International Conference on Machine Learning (ICML).
[3] Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. 2002. Finding Frequent Items in Data Streams. In Automata,

Languages and Programming, 29th International Colloquium (ICALP).
[4] Tianyi Chen, Jun Gao, Hedui Chen, and Yaofeng Tu. 2023. LOGER: A Learned Optimizer towards Generating Efficient

and Robust Query Execution Plans. Proceedings of the VLDB Endowment 16, 7 (2023), 1777–1789.
[5] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg

Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal

Shah. 2016. Wide & Deep Learning for Recommender Systems. In Proceedings of the 1st Workshop on Deep Learning for
Recommender Systems (DLRS@RecSys).

[6] Monica Chiosa, Thomas Preußer, and Gustavo Alonso. 2021. SKT: A One-Pass Multi-Sketch Data Analytics Accelerator.

Proceedings of the VLDB Endowment 14, 11 (2021), 2369–2382.
[7] Michael Chui, James Manyika, Mehdi Miremadi, Nicolaus Henke, Rita Chung, Pieter Nel, and Sankalp Malhotra.

2018. Notes from the AI frontier: Insights from hundreds of use cases. McKinsey Global Institute 2 (2018).

https://www.mckinsey.com/west-coast/~/media/McKinsey/Featured%20Insights/Artificial%20Intelligence/Notes%

20from%20the%20AI%20frontier%20Applications%20and%20value%20of%20deep%20learning/Notes-from-the-AI-

frontier-Insights-from-hundreds-of-use-cases-Discussion-paper.pdf

[8] Graham Cormode and S. Muthukrishnan. 2005. An improved data stream summary: the count-min sketch and its

applications. Journal of Algorithms 55, 1 (2005), 58–75.

Proc. ACM Manag. Data, Vol. 2, No. N1 (SIGMOD), Article 51. Publication date: February 2024.

https://kaggle.com/competitions/kddcup2012-track2
https://www.mckinsey.com/west-coast/~/media/McKinsey/Featured%20Insights/Artificial%20Intelligence/Notes%20from%20the%20AI%20frontier%20Applications%20and%20value%20of%20deep%20learning/Notes-from-the-AI-frontier-Insights-from-hundreds-of-use-cases-Discussion-paper.pdf
https://www.mckinsey.com/west-coast/~/media/McKinsey/Featured%20Insights/Artificial%20Intelligence/Notes%20from%20the%20AI%20frontier%20Applications%20and%20value%20of%20deep%20learning/Notes-from-the-AI-frontier-Insights-from-hundreds-of-use-cases-Discussion-paper.pdf
https://www.mckinsey.com/west-coast/~/media/McKinsey/Featured%20Insights/Artificial%20Intelligence/Notes%20from%20the%20AI%20frontier%20Applications%20and%20value%20of%20deep%20learning/Notes-from-the-AI-frontier-Insights-from-hundreds-of-use-cases-Discussion-paper.pdf

CAFE: Towards Compact, Adaptive, and Fast Embedding for Large-scale Recommendation Models 51:25

[9] Fan Deng and Davood Rafiei. 2007. New estimation algorithms for streaming data: Count-min can do more. Webdocs.
Cs. Ualberta. Ca (2007).

[10] Wei Deng, Junwei Pan, Tian Zhou, Deguang Kong, Aaron Flores, and Guang Lin. 2021. DeepLight: Deep Lightweight

Feature Interactions for Accelerating CTR Predictions in Ad Serving. In Proceedings of the 14th ACM International
Conference on Web Search and Data Mining (WSDM).

[11] Xenofontas A. Dimitropoulos, Paul Hurley, and Andreas Kind. 2008. Probabilistic lossy counting: an efficient algorithm

for finding heavy hitters. ACM SIGCOMM Computer Communication Review 38, 1 (2008), 5.

[12] Yue Ding, Yuhe Guo, Wei Lu, Hai-Xiang Li, Meihui Zhang, Hui Li, An-Qun Pan, and Xiaoyong Du. 2023. Context-

Aware Semantic Type Identification for Relational Attributes. Journal of Computer Science and Technology 38, 4 (2023),

927–946.

[13] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq R. Joty, Mourad Ouzzani, and Nan Tang. 2018. Dis-

tributed Representations of Tuples for Entity Resolution. Proceedings of the VLDB Endowment 11, 11 (2018), 1454–1467.
[14] Cristian Estan and George Varghese. 2002. New directions in traffic measurement and accounting. ACM SIGCOMM

Computer Communication Review 32, 4 (2002), 323–336.

[15] Yao-Chung Fan and Arbee L. P. Chen. 2008. Efficient and robust sensor data aggregation using linear counting sketches.

In 22nd IEEE International Symposium on Parallel and Distributed Processing (IPDPS).
[16] Fangcheng Fu, Yuzheng Hu, Yihan He, Jiawei Jiang, Yingxia Shao, Ce Zhang, and Bin Cui. 2020. Don’t Waste Your Bits!

Squeeze Activations and Gradients for Deep Neural Networks via TinyScript. In Proceedings of the 37th International
Conference on Machine Learning (ICML).

[17] Antonio A. Ginart, Maxim Naumov, Dheevatsa Mudigere, Jiyan Yang, and James Zou. 2021. Mixed Dimension

Embeddings with Application to Memory-Efficient Recommendation Systems. In IEEE International Symposium on
Information Theory (ISIT).

[18] Siddharth Gopal. 2016. Adaptive Sampling for SGD by Exploiting Side Information. In Proceedings of the 33nd
International Conference on Machine Learning (ICML).

[19] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017. DeepFM: A Factorization-Machine based

Neural Network for CTR Prediction. In Proceedings of the 26th International Joint Conference on Artificial Intelligence
(IJCAI).

[20] Udit Gupta, Samuel Hsia, Vikram Saraph, Xiaodong Wang, Brandon Reagen, Gu-Yeon Wei, Hsien-Hsin S. Lee, David

Brooks, and Carole-JeanWu. 2020. DeepRecSys: A System for Optimizing End-To-EndAt-Scale Neural Recommendation

Inference. In Proceedings of the 47th Annual International Symposium on Computer Architecture (ISCA).
[21] Udit Gupta, Carole-JeanWu, XiaodongWang, Maxim Naumov, Brandon Reagen, David Brooks, Bradford Cottel, KimM.

Hazelwood, Mark Hempstead, Bill Jia, Hsien-Hsin S. Lee, Andrey Malevich, Dheevatsa Mudigere, Mikhail Smelyan-

skiy, Liang Xiong, and Xuan Zhang. 2020. The Architectural Implications of Facebook’s DNN-Based Personalized

Recommendation. In IEEE International Symposium on High Performance Computer Architecture (HPCA).
[22] Teng-Yue Han, Pengfei Wang, and Shaozhang Niu. 2023. Multimodal Interactive Network for Sequential Recommen-

dation. Journal of Computer Science and Technology 38, 4 (2023), 911–926.

[23] Ruihong Huang, Shaoxu Song, Yunsu Lee, Jungho Park, Soo-Hyung Kim, and Sungmin Yi. 2020. Effective and Efficient

Retrieval of Structured Entities. Proceedings of the VLDB Endowment 13, 6 (2020), 826–839.
[24] Yesdaulet Izenov, Asoke Datta, Florin Rusu, and Jun Hyung Shin. 2021. COMPASS: Online Sketch-based Query

Optimization for In-MemoryDatabases. In Proceedings of the International Conference onManagement of Data (SIGMOD).
[25] Biye Jiang, Chao Deng, Huimin Yi, Zelin Hu, Guorui Zhou, Yang Zheng, Sui Huang, Xinyang Guo, Dongyue Wang,

Yue Song, Liqin Zhao, Zhi Wang, Peng Sun, Yu Zhang, Di Zhang, Jinhui Li, Jian Xu, Xiaoqiang Zhu, and Kun Gai. 2019.

Xdl: an industrial deep learning framework for high-dimensional sparse data. In Proceedings of the 1st International
Workshop on Deep Learning Practice for High-Dimensional Sparse Data.

[26] Angelos Katharopoulos and François Fleuret. 2018. Not All Samples Are Created Equal: Deep Learning with Importance

Sampling. In Proceedings of the 35th International Conference on Machine Learning (ICML).
[27] Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, and Hongrae Lee. 2020. Natural language to SQL: Where are we

today? Proceedings of the VLDB Endowment 13, 10 (2020), 1737–1750.
[28] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In 3rd International Conference

on Learning Representations (ICLR).
[29] Adrian Kochsiek and Rainer Gemulla. 2021. Parallel Training of Knowledge Graph Embedding Models: A Comparison

of Techniques. Proceedings of the VLDB Endowment 15, 3 (2021), 633–645.
[30] Shuming Kong, Weiyu Cheng, Yanyan Shen, and Linpeng Huang. 2023. AutoSrh: An Embedding Dimensionality

Search Framework for Tabular Data Prediction. IEEE Transactions on Knowledge and Data Engineering 35, 7 (2023),

6673–6686.

[31] Suyong Kwon, Woohwan Jung, and Kyuseok Shim. 2022. Cardinality Estimation of Approximate Substring Queries

using Deep Learning. Proceedings of the VLDB Endowment 15, 11 (2022), 3145–3157.

Proc. ACM Manag. Data, Vol. 2, No. N1 (SIGMOD), Article 51. Publication date: February 2024.

51:26 Hailin Zhang, et al.

[32] Criteo Labs. 2013. Download Terabyte Click Logs. https://labs.criteo.com/2013/12/download-terabyte-click-logs/.

[33] Criteo Labs. 2014. Kaggle display advertising challenge dataset. https://labs.criteo.com/2014/02/kaggle-display-

advertising-challenge-dataset/.

[34] Fan Lai, Wei Zhang, Rui Liu, William Tsai, XiaohanWei, Yuxi Hu, Sabin Devkota, Jianyu Huang, Jongsoo Park, Xing Liu,

Zeliang Chen, Ellie Wen, Paul Rivera, Jie You, Chun-cheng Jason Chen, and Mosharaf Chowdhury. 2023. AdaEmbed:

Adaptive Embedding for Large-Scale Recommendation Models. In 17th USENIX Symposium on Operating Systems
Design and Implementation (OSDI).

[35] Jizhou Li, Zikun Li, Yifei Xu, Shiqi Jiang, Tong Yang, Bin Cui, Yafei Dai, and Gong Zhang. 2020. WavingSketch:

An Unbiased and Generic Sketch for Finding Top-k Items in Data Streams. In Proceedings of the 26th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining (KDD).

[36] Shiwei Li, Huifeng Guo, Lu Hou, Wei Zhang, Xing Tang, Ruiming Tang, Rui Zhang, and Ruixuan Li. 2023. Adaptive

Low-Precision Training for Embeddings in Click-Through Rate Prediction. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI).

[37] Tao Li, Shigang Chen, and Yibei Ling. 2012. Per-Flow Traffic Measurement Through Randomized Counter Sharing.

IEEE/ACM Transactions on Networking 20, 5 (2012), 1622–1634.

[38] Xiangru Lian, Binhang Yuan, Xuefeng Zhu, YulongWang, Yongjun He, HonghuanWu, Lei Sun, Haodong Lyu, Chengjun

Liu, Xing Dong, Yiqiao Liao, Mingnan Luo, Congfei Zhang, Jingru Xie, Haonan Li, Lei Chen, Renjie Huang, Jianying

Lin, Chengchun Shu, Xuezhong Qiu, Zhishan Liu, Dongying Kong, Lei Yuan, Hai Yu, Sen Yang, Ce Zhang, and Ji Liu.

2022. Persia: An Open, Hybrid System Scaling Deep Learning-based Recommenders up to 100 Trillion Parameters. In

Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (KDD).
[39] Jie Liu, Wenqian Dong, Dong Li, and Qingqing Zhou. 2021. Fauce: Fast and Accurate Deep Ensembles with Uncertainty

for Cardinality Estimation. Proceedings of the VLDB Endowment 14, 11 (2021), 1950–1963.
[40] Zirui Liu, Chaozhe Kong, Kaicheng Yang, Tong Yang, Ruijie Miao, Qizhi Chen, Yikai Zhao, Yaofeng Tu, and Bin Cui.

2023. HyperCalm Sketch: One-Pass Mining Periodic Batches in Data Streams. In 39th IEEE International Conference on
Data Engineering (ICDE).

[41] Zirui Liu, Yixin Zhang, Yifan Zhu, Ruwen Zhang, Tong Yang, Kun Xie, ShaWang, Tao Li, and Bin Cui. 2023. TreeSensing:

Linearly Compressing Sketches with Flexibility. In Proceedings of the International Conference on Management of Data
(SIGMOD).

[42] Fuyuan Lyu, Xing Tang, Hong Zhu, Huifeng Guo, Yingxue Zhang, Ruiming Tang, and Xue Liu. 2022. OptEmbed:

Learning Optimal Embedding Table for Click-through Rate Prediction. In Proceedings of the 31st ACM International
Conference on Information & Knowledge Management (CIKM).

[43] Ankush Mandal, He Jiang, Anshumali Shrivastava, and Vivek Sarkar. 2018. Topkapi: Parallel and Fast Sketches for

Finding Top-K Frequent Elements. In Advances in Neural Information Processing Systems 31 (NeurIPS).
[44] Xiangfu Meng, Hongjin Huo, Xiaoyan Zhang, Wanchun Wang, and Jinxia Zhu. 2023. A Survey of Personalized News

Recommendation. Data Science and Engineering 8, 4 (2023), 396–416.

[45] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient Computation of Frequent and Top-k

Elements in Data Streams. In International Conference on Database Theory.
[46] Xupeng Miao, Xiaonan Nie, Hailin Zhang, Tong Zhao, and Bin Cui. 2023. Hetu: a highly efficient automatic parallel

distributed deep learning system. Science China Information Sciences 66, 1 (2023).
[47] Xupeng Miao, Yining Shi, Hailin Zhang, Xin Zhang, Xiaonan Nie, Zhi Yang, and Bin Cui. 2022. HET-GMP: A Graph-

based System Approach to Scaling Large Embedding Model Training. In Proceedings of the International Conference on
Management of Data (SIGMOD).

[48] Xupeng Miao, Hailin Zhang, Yining Shi, Xiaonan Nie, Zhi Yang, Yangyu Tao, and Bin Cui. 2022. HET: Scaling out

Huge Embedding Model Training via Cache-enabled Distributed Framework. Proceedings of the VLDB Endowment 15,
2 (2022), 312–320.

[49] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhihao Jia, Andrew Tulloch, Srinivas Sridharan, Xing Liu, Mustafa

Ozdal, Jade Nie, Jongsoo Park, Liang Luo, Jie Amy Yang, Leon Gao, Dmytro Ivchenko, Aarti Basant, Yuxi Hu, Jiyan

Yang, Ehsan K. Ardestani, Xiaodong Wang, Rakesh Komuravelli, Ching-Hsiang Chu, Serhat Yilmaz, Huayu Li, Jiyuan

Qian, Zhuobo Feng, Yinbin Ma, Junjie Yang, Ellie Wen, Hong Li, Lin Yang, Chonglin Sun, Whitney Zhao, Dimitry Melts,

Krishna Dhulipala, K. R. Kishore, Tyler Graf, Assaf Eisenman, Kiran Kumar Matam, Adi Gangidi, Guoqiang Jerry Chen,

Manoj Krishnan, Avinash Nayak, Krishnakumar Nair, Bharath Muthiah, Mahmoud khorashadi, Pallab Bhattacharya,

Petr Lapukhov, Maxim Naumov, Ajit Mathews, Lin Qiao, Mikhail Smelyanskiy, Bill Jia, and Vijay Rao. 2022. Software-

hardware co-design for fast and scalable training of deep learning recommendation models. In Proceedings of the 49th
Annual International Symposium on Computer Architecture (ISCA).

[50] Maxim Naumov, John Kim, Dheevatsa Mudigere, Srinivas Sridharan, Xiaodong Wang, Whitney Zhao, Serhat Yilmaz,

Changkyu Kim, Hector Yuen, Mustafa Ozdal, Krishnakumar Nair, Isabel Gao, Bor-Yiing Su, Jiyan Yang, and Mikhail

Smelyanskiy. 2020. Deep Learning Training in Facebook Data Centers: Design of Scale-up and Scale-out Systems.

Proc. ACM Manag. Data, Vol. 2, No. N1 (SIGMOD), Article 51. Publication date: February 2024.

https://labs.criteo.com/2013/12/download-terabyte-click-logs/
https://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/
https://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/

CAFE: Towards Compact, Adaptive, and Fast Embedding for Large-scale Recommendation Models 51:27

CoRR abs/2003.09518 (2020).

[51] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo Park,

Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia

Cherniavskii, Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira, Xianjie

Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, and Misha Smelyanskiy. 2019. Deep Learning Recommendation

Model for Personalization and Recommendation Systems. CoRR abs/1906.00091 (2019).

[52] Niketan Pansare, Jay Katukuri, Aditya Arora, Frank Cipollone, Riyaaz Shaik, Noyan Tokgozoglu, and Chandru

Venkataraman. 2022. Learning Compressed Embeddings for On-Device Inference. In Proceedings of Machine Learning
and Systems (MLSys).

[53] Guillaume Pitel and Geoffroy Fouquier. 2015. Count-Min-Log sketch: Approximately counting with approximate

counters. In International Symposium on Web AlGorithms.
[54] NVIDIA AI platform. 2020. MLPerf Benchmark. https://mlperf.org.

[55] Pratanu Roy, Arijit Khan, and Gustavo Alonso. 2016. Augmented Sketch: Faster and More Accurate Stream Processing.

In Proceedings of the International Conference on Management of Data (SIGMOD).
[56] Pengyang Shao, Le Wu, Lei Chen, Kun Zhang, and Meng Wang. 2022. FairCF: fairness-aware collaborative filtering.

Science China Information Sciences 65, 12 (2022).
[57] Benwei Shi, Zhuoyue Zhao, Yanqing Peng, Feifei Li, and Jeff M. Phillips. 2021. At-the-time and Back-in-time Persistent

Sketches. In Proceedings of the International Conference on Management of Data (SIGMOD).
[58] Hao-Jun Michael Shi, Dheevatsa Mudigere, Maxim Naumov, and Jiyan Yang. 2020. Compositional Embeddings Using

Complementary Partitions for Memory-Efficient Recommendation Systems. In Proceedings of the 26th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining (KDD).

[59] Daniel Ting. 2018. Data Sketches for Disaggregated Subset Sum and Frequent Item Estimation. In Proceedings of the
International Conference on Management of Data (SIGMOD).

[60] Corinna Underwood. 2019. Use cases of recommendation systems in business–current applications and methods.

Emerj (2019). https://emerj.com/ai-sector-overviews/use-cases-recommendation-systems/

[61] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & Cross Network for Ad Click Predictions. In

Proceedings of the ADKDD’17.
[62] Steve Wang and Will Cukierski. 2014. Avazu Click-Through Rate Prediction. https://kaggle.com/competitions/avazu-

ctr-prediction.

[63] Zehuan Wang, Yingcan Wei, Minseok Lee, Matthias Langer, Fan Yu, Jie Liu, Shijie Liu, Daniel G. Abel, Xu Guo, Jianbing

Dong, Ji Shi, and Kunlun Li. 2022. Merlin HugeCTR: GPU-accelerated Recommender System Training and Inference.

In Proceedings of the 16th ACM Conference on Recommender Systems (RecSys).
[64] Kilian Q. Weinberger, Anirban Dasgupta, John Langford, Alexander J. Smola, and Josh Attenberg. 2009. Feature hashing

for large scale multitask learning. In Proceedings of the 26th International Conference on Machine Learning (ICML).
[65] Minhui Xie, Kai Ren, Youyou Lu, Guangxu Yang, Qingxing Xu, Bihai Wu, Jiazhen Lin, Hongbo Ao, Wanhong Xu, and

Jiwu Shu. 2020. Kraken: memory-efficient continual learning for large-scale real-time recommendations. In Proceedings
of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC).

[66] Xing Xie, Jianxun Lian, Zheng Liu, XitingWang, FangzhaoWu, HongweiWang, and Zhongxia Chen. 2018. Personalized

recommendation systems: Five hot research topics you must know. Microsoft Research Lab-Asia (2018). https:

//www.microsoft.com/en-us/research/lab/microsoft-research-asia/articles/personalized-recommendation-systems/

[67] Zhiqiang Xu, Dong Li, Weijie Zhao, Xing Shen, Tianbo Huang, Xiaoyun Li, and Ping Li. 2021. Agile and Accurate CTR

Prediction Model Training for Massive-Scale Online Advertising Systems. In Proceedings of the International Conference
on Management of Data (SIGMOD).

[68] Bencheng Yan, Pengjie Wang, Jinquan Liu, Wei Lin, Kuang-Chih Lee, Jian Xu, and Bo Zheng. 2021. Binary Code based

Hash Embedding for Web-scale Applications. In Proceedings of the 30th ACM International Conference on Information &
Knowledge Management (CIKM).

[69] Renchi Yang, Jieming Shi, Xiaokui Xiao, Yin Yang, Juncheng Liu, and Sourav S. Bhowmick. 2020. Scaling Attributed

Network Embedding to Massive Graphs. Proceedings of the VLDB Endowment 14, 1 (2020), 37–49.
[70] Tong Yang, Junzhi Gong, Haowei Zhang, Lei Zou, Lei Shi, and Xiaoming Li. 2018. HeavyGuardian: Separate and Guard

Hot Items in Data Streams. In Proceedings of the 24th ACM SIGKDD Conference on Knowledge Discovery & Data Mining
(KDD).

[71] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve Uhlig. 2018.

Elastic sketch: adaptive and fast network-wide measurements. In Proceedings of the 2018 ACM SIGCOMM Conference.
[72] Chunxing Yin, Bilge Acun, Carole-Jean Wu, and Xing Liu. 2021. TT-Rec: Tensor Train Compression for Deep Learning

Recommendation Models. In Proceedings of Machine Learning and Systems (MLSys).
[73] Zhiyang Yuan, Wenguang Zheng, Peilin Yang, Qingbo Hao, and Yingyuan Xiao. 2023. Evolving Interest with Feature

Co-action Network for CTR Prediction. Data Science and Engineering 8, 4 (2023), 344–356.

Proc. ACM Manag. Data, Vol. 2, No. N1 (SIGMOD), Article 51. Publication date: February 2024.

https://mlperf.org
https://emerj.com/ai-sector-overviews/use-cases-recommendation-systems/
https://kaggle.com/competitions/avazu-ctr-prediction
https://kaggle.com/competitions/avazu-ctr-prediction
https://www.microsoft.com/en-us/research/lab/microsoft-research-asia/articles/personalized-recommendation-systems/
https://www.microsoft.com/en-us/research/lab/microsoft-research-asia/articles/personalized-recommendation-systems/

51:28 Hailin Zhang, et al.

[74] Caojin Zhang, Yicun Liu, Yuanpu Xie, Sofia Ira Ktena, Alykhan Tejani, Akshay Gupta, Pranay Kumar Myana, Deepak

Dilipkumar, Suvadip Paul, Ikuhiro Ihara, Prasang Upadhyaya, Ferenc Huszar, and Wenzhe Shi. 2020. Model Size

Reduction Using Frequency Based Double Hashing for Recommender Systems. In Proceedings of the 14th ACM
Conference on Recommender Systems (RecSys).

[75] Hailin Zhang, Zirui Liu, and Boxuan Chen. 2023. Source codes related to CAFE. https://github.com/HugoZHL/CAFE.

[76] Hailin Zhang, Penghao Zhao, Xupeng Miao, Yingxia Shao, Zirui Liu, Tong Yang, and Bin Cui. 2023. Experimental

Analysis of Large-scale Learnable Vector Storage Compression. CoRR abs/2311.15578 (2023).

[77] Jia-Dong Zhang and Chi-Yin Chow. 2015. GeoSoCa: Exploiting Geographical, Social and Categorical Correlations for

Point-of-Interest Recommendations. In Proceedings of the 38th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR).

[78] Yinda Zhang, Zaoxing Liu, Ruixin Wang, Tong Yang, Jizhou Li, Ruijie Miao, Peng Liu, Ruwen Zhang, and Junchen

Jiang. 2021. CocoSketch: high-performance sketch-based measurement over arbitrary partial key query. In Proceedings
of the 2021 ACM SIGCOMM Conference.

[79] Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Ruiquan Ding, Mingming Sun, and Ping Li. 2020. Distributed

Hierarchical GPU Parameter Server for Massive Scale Deep Learning Ads Systems. In Proceedings of Machine Learning
and Systems (MLSys).

[80] Weijie Zhao, Jingyuan Zhang, Deping Xie, Yulei Qian, Ronglai Jia, and Ping Li. 2019. AIBox: CTR Prediction Model

Training on a Single Node. In Proceedings of the 28th ACM International Conference on Information & Knowledge
Management (CIKM).

[81] Xiangyu Zhao, Haochen Liu, Hui Liu, Jiliang Tang, Weiwei Guo, Jun Shi, Sida Wang, Huiji Gao, and Bo Long. 2021.

AutoDim: Field-aware Embedding Dimension Searchin Recommender Systems. In Proceedings of the Web Conference
(WWW).

[82] Yue Zhao, Gao Cong, Jiachen Shi, and Chunyan Miao. 2022. QueryFormer: A Tree Transformer Model for Query Plan

Representation. Proceedings of the VLDB Endowment 15, 8 (2022), 1658–1670.
[83] Guorui Zhou, Xiaoqiang Zhu, Chengru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, and Kun Gai.

2018. Deep Interest Network for Click-Through Rate Prediction. In Proceedings of the 24th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining (KDD).

[84] Jieming Zhu, Jinyang Liu, Shuai Yang, Qi Zhang, and Xiuqiang He. 2021. Open Benchmarking for Click-Through Rate

Prediction. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management (CIKM).

Received July 2023; revised October 2023; accepted November 2023

Proc. ACM Manag. Data, Vol. 2, No. N1 (SIGMOD), Article 51. Publication date: February 2024.

https://github.com/HugoZHL/CAFE

	Abstract
	1 introduction
	1.1 Background and Motivation
	1.2 Limitations of Prior Art
	1.3 Our Proposed Method
	1.4 Main Contribution

	2 Preliminary
	2.1 DLRM
	2.2 Embedding Compression

	3 CAFE Design
	3.1 CAFE Overview
	3.2 The HotSketch Algorithm
	3.3 Migration Strategy
	3.4 Multi-level Hash Embedding
	3.5 Theoretical Analysis

	4 Implementation
	5 Experimental Results
	5.1 Experimental Settings
	5.2 End-to-end Comparison
	5.3 Configuration Sensitivity
	5.4 Multi-level Hash Embedding
	5.5 Performance on Processed Dataset
	5.6 HotSketch Performance

	6 Related Work
	6.1 Embedding Compression
	6.2 Sketching Algorithm

	7 Conclusion
	Acknowledgments
	References

