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Double-Anonymous Sketch: Achieving Top-𝐾-fairness for
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Finding top-𝐾 frequent items has been a hot topic in data stream processing in recent years, which has a

wide range of applications. However, most of existing sketch algorithms focuses on finding local top-𝐾 in

a single data stream. In this paper, we work on finding global top-𝐾 in multiple disjoint data streams. We

find that directly deploying prior sketch algorithms is often unfair under global scenarios, which will degrade

the accuracy of global top-𝐾 . We define top-𝐾-fairness and show that it is important for finding global top-𝐾 .

To achieve top-𝐾-fairness, we propose a new sketch framework, called the Double-Anonymous sketch. The

process of finding global top-𝐾 items is similar to that of paper reviewing and democratic elections. In these

scenarios, double-anonymity is often an effective strategy to achieve top-𝐾-fairness. We also propose two

techniques, hot panning, and early freezing, to further improve the accuracy. We theoretically prove that

the Double-Anonymous sketch achieves top-𝐾-fairnesswhile keeping high accuracy. We perform extensive

experiments to verify top-𝐾-fairness in the scenario of disjoint data streams. The experimental results

show that the Double-Anonymous sketch’s error is up to 129 times (60 times on average) smaller than the

state-of-the-art. All the related source code is open-sourced and available at Github.
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1 INTRODUCTION
1.1 Background and Motivation
Finding top-𝐾 frequent items has been a hot topic in data stream processing in recent years,

which has a wide range of applications, such as data mining [16, 23, 50, 52], databases [18, 37, 46],

networking [26, 53], and network security [12, 48]. Finding top-𝐾 frequent items refers to selecting
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𝐾 items with the largest number of frequencies/occurrences, and providing frequency estimation. In

the era of big data, the speed and volume of data are growing explosively. Sketches [5, 7, 8, 10, 13, 15–

21, 23–25, 29, 32, 37, 38, 40, 46, 47, 52, 53, 55, 56], a kind of probabilistic data structures, have obtained

wide acceptance and interests to address the task of finding top-𝐾 due to their efficiency in terms

of both time and space, although they can have a small error [9].

For finding top-𝐾 frequent items, most of existing sketch algorithms focus on providing statistics

over a single data stream [5, 7, 10, 15, 23, 28, 29, 37, 42, 46, 52, 53], while a few of them [23, 46] work

on merging the statistics over multiple related data streams into one. In this paper, we provide the

first sketch that can compare the statistics over different disjoint data streams. Specifically, given 𝑁
disjoint data streams, how can we compare their own top-𝐾 and select the global top-𝐾 . Note that

the sizes (volumes) of these data streams are often skewed in practice (e.g., power law distribution)

[33].

We use an example on network monitoring to explain the problem. For an autonomous system

(AS) in a wide-area network (WAN), external traffic enters the AS through multiple border routers

[36]. Due to the principle of WAN routing protocol [43], all network packets sent to the AS from

the same source IP address must pass through the same border router. In other words, if we regard

the source IP address of the network packets as the key, the network packets streams on different

border routers are disjoint data streams. Network operators usually need to monitor the main source

of traffic entering the AS, i.e., the 𝐾 source IP addresses that send the most packets in a period of

time [27]. To find these IP addresses, each border router reports the local top-𝐾 frequent source

IP address and their frequency within this time period, and operator sorts all local frequent IP

addresses to get the global top-𝐾 .
For finding global top-𝐾 frequent items, a typical solution is to first use a sketch for each data

stream to select local top-𝐾 items, and then sort them based on their estimated frequency to report

the most frequent 𝐾 items globally. However, we find that directly apply existing sketch algorithms

for each data stream often leads to unfairness. Specifically, the estimated frequency of top-𝐾 items

in prior sketches is largely influenced by the local environment (e.g., the size of data streams). If

we directly sort all the selected local top-𝐾 items based on their estimated frequency, the result

will be significantly related to the items’ local environment rather than its real frequency. For

instance, suppose there are 𝑁 disjoint data streams, some heavy data streams have more items,

and some light data streams have fewer items. Suppose we use 𝑁 SpaceSaving [29] to find local

top-𝐾 items from the 𝑁 data streams. SpaceSaving is a well-known sketch, which always provides

overestimated estimation, and the degree of overestimation is positively correlated to the size of

the data stream. As a result, the items in the heavy data streams will be overestimated more and

get higher chances to be selected as global top-𝐾 items, while the frequent items in the light data

streams will tend to be ignored, which is unfair.

To address this problem, we aim to achieve top-𝐾-fairness: the degree of overestimation or

underestimation for the local selected top-𝐾 items is a constant, i.e., not related to the data stream.

The formal definition of top-𝐾-fairness is provided in Section 2.1. When we achieve top-𝐾-fairness,

the accuracy of global top-𝐾 will rise significantly, especially if the sizes of data streams are highly

skewed.

1.2 Prior Works
To the best of our knowledge, we are the first work to focus on the top-𝐾-fairness of global

top-𝐾 items. Many existing work focuses on providing unbiased estimation in distributed scenarios

[23, 46]. Unbiasedness is helpful if we want to aggregate the statistics of multiple data streams for

all items due to the Law of Larger Numbers. However, although the estimation is unbiased over

all items, if we only focus on the estimated frequency of top-K items, we can find that it is often
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overestimated. The main reason is that the top-K selection process is not unbiased. In other words,

if we select top-K items, we tend to select items which are overestimated, which leads to unfairness.

We use two state-of-the-art unbiased sketches, Unbiased SpaceSaving (USS) [46] and WavingSketch

(Waving) [23], to illustrate the problem.
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Fig. 1. We demonstrate internal unfairness of USS, and show how external unfairness would severely harm
accuracy for finding global top-𝐾 items.

As shown in Figure 1(a), although the estimation of USS is unbiased when considering all items,

it overestimates the selected top-𝐾 items and underestimates others. Furthermore, such top-𝐾-

unfairness in local data streams will cause top-𝐾-unfairness when finding global top-𝐾 items. As

shown in Figure 1(b), suppose the global top-1 item 𝑒𝑡𝑜𝑝 is in a light data stream with a very small

number of items, and we deploy a USS for each data stream. USS provides a slightly overestimated

value for 𝑒𝑡𝑜𝑝 , which is in the light data stream, and provides significantly overestimated value

for frequent items in heavy data streams. As a result, when the size distribution of the distributed

disjoint data streams is highly skewed, even the global top-1 item could be ignored, which is often

unacceptable in practice. In Section 5.4, we also discuss that such unfairness cannot be alleviated

by re-weighting the estimated frequency.

1.3 Our Proposed Solution
To achieve top-𝐾-fairness, we propose a new sketch framework, called the Double-Anonymous

sketch. We first propose a basic version which achieves top-𝐾-fairness, and then we optimize

the accuracy and throughput through two techniques hot panning and early freezing. The Double-
Anonymous sketch has the following advantages: 1) It is the first work that discusses the fairness

problem for comparing multiple disjoint data streams. 2) We provide a formal definition of top-

𝐾-fairness and disjoint data streams in Section 2.1. We also prove that our sketch can achieve

top-𝐾-fairness while keeping high accuracy as prior sketches. 3) It is accurate: The error (average

relative error) of our sketch is up to 129 times (60 times on average) smaller than Waving and 3 ∼ 4

orders of magnitude smaller than Frequent, USS, and SS. 4) It is generic: we implement existing

four replacement strategies in our framework to achieve top-𝐾-fairness and accuracy.

The key technique of our Double-Anonymous sketch to achieve top-𝐾-fairness is called double-

anonymity. The process of finding global top-𝐾 items is similar to that of paper reviewing and

democratic elections. Double-anonymity is often an effective strategy to achieve fairness. We

leverage this strategy to enable top-𝐾 sketches to achieve top-𝐾-fairness in global scenarios. A

top-𝐾 sketch often consists of two parts, a top-𝐾 part for finding top-𝐾 items and a count part

for frequency estimation. If a top-𝐾 sketch meets the following two conditions, we consider it

achieves double-anonymity: 1) the top-𝐾 part finds top-𝐾 items independently, and does not know

any items’ estimated frequency in the count part; 2) the count part estimates item’s frequency
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independently, and does not know which items are top-𝐾 . However, the existing two unbiased

sketches mentioned above do not meet the first condition, and thus are not double-anonymous.

Our formal definition of double-anonymity is provided in Section 3.1. We theoretically prove that

double-anonymity is a sufficient condition of top-𝐾-fairness. Therefore, we follow this principle to

design our solution.

In our basic version, we use a top-𝐾 sketch (e.g., SpaveSaving [29]) as the top-𝐾 part and use an

unbiased sketch (e.g., CMM sketch [14]) as the count part. To achieve double-anonymity, our first

version makes these two parts work independently, i.e., it forbids any information transmission

between them. Note that the independent condition is stronger than double-anonymity. For an

incoming item 𝑒 , it will be inserted into the two parts independently and respectively. Obviously,

our first version is double-anonymous, and thus achieves top-𝐾-fairness.

However, although the first version achieves top-𝐾-fairness, it fails to achieve high accuracy.

Therefore, we propose two important optimization methods to significantly improve accuracy:

hot panning and early freezing. Unlike the first version, in these two versions, we allow some

information transmission between the two parts as long as it does not violate double-anonymity.

Relaxing the forbidden condition, we can have more opportunities to improve accuracy. First, the

main reason that brings large errors in the first version is information redundancy: the information

of hot items is recorded in both two parts. The key idea of hot panning is that using the top-𝐾

part to pan the hot items, and only record them in the top-𝐾 part to remove such redundancy.

More details are provided in Section 3.2. Second, the error of a sketch accumulates with more and

more items inserted. The key idea of early freezing is that using a freezing counter to freeze the

continuously accumulating error as early as possible, thus minimizing the error. More details are

provided in Section 3.3. According to Section 5.2, the error of early freezing version is about 66 ×
lower than that of the basic version after applying hot panning and early freezing.

We show that the Double-Anonymous sketch is generic. Any replacement strategy independent

with the CMM sketch can be applied to the Double-Anonymous sketch, and we choose four

[5, 28, 29, 52] as case studies. We also show that the Double-Anonymous sketch is versatile. The

Double-Anonymous sketch not only achieves top-𝐾-fairness, but also provides both upper bound

and lower bound for item frequency without additional data structures.

Key Contributions:

• We define a new important property: top-𝐾-fairness. We define and analyze top-𝐾-fairness and

derive its sufficient condition.

• We propose the Double-Anonymous sketch, which is accurate, unbiased, and generic. The Double-

Anonymous sketch is the first work that achieves top-𝐾-fairness.

• We theoretically prove that the Double-Anonymous sketch achieves top-𝐾-fairness and can keep

high accuracy as prior sketches.

• We perform extensive experiments to verify top-𝐾-fairness in the distributed scenario. We also

show that the Double-Anonymous sketch’s error is much smaller than other existing works.

2 BACKGROUND AND RELATEDWORK
In this section, we provide formal definitions of our problem and top-𝐾-fairness. We discuss the

difference between unbiasedness and top-𝐾-fairness.

2.1 Formal Definitions and Preliminaries
Definition 2.1. (Disjoint data streams) Given 𝑁 data streams S1, · · · ,S𝑁 , where

S𝑖 =
{
𝑒 (𝑖,1) , · · · , 𝑒 (𝑖,𝑚𝑖 )

}
Proc. ACM Manag. Data, Vol. 1, No. 1, Article 79. Publication date: May 2023.
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contains𝑚𝑖 items, and each item 𝑒 (𝑖, 𝑗 ) belongs to set U𝑖 =
{
𝑢 (𝑖,1) , · · · , 𝑢 (𝑖,𝑛𝑖 )

}
. 𝑁 Data streams are

disjoint if U𝑖 ∩U𝑗 = ∅ for any two different data streams S𝑖 and S𝑗 .

Generally speaking, the settings of disjoint data streams require that one item cannot appear in

multiple different data streams. Disjoint data streams are common in scenarios such as distributed

storage systems and distributed network management. In these scenarios, an item is often placed

on only one device, and then only appears in one data stream.

Definition 2.2. (Global top-𝐾 items) Given 𝑁 disjoint data streams S1,· · · , S𝑁 , for data stream
S𝑖 =

{
𝑒 (𝑖,1) , · · · , 𝑒 (𝑖,𝑚𝑖 )

}
and item setU𝑖 , we define that the frequency of item 𝑢 (𝑖, 𝑗 ) ∈ U𝑖 as

𝑓(𝑖, 𝑗 ) =
𝑚𝑖∑︁
𝑘=1

1{𝑒 (𝑖,𝑘 )=𝑢 (𝑖,𝑗 ) } .

The global top-𝐾 items are the 𝐾 items with the largest frequency.

To find global top-𝐾 items, each data stream S𝑖 uses the top-𝐾 algorithm to find the set T𝑖 ={
𝑢 (𝑖,𝑝1 ) , · · · , 𝑢 (𝑖,𝑝𝐾 )

}
of local top-𝐾 items and their estimated frequency

ˆ𝑓(𝑖,𝑝 𝑗 ) . Each data stream

S𝑖 reports the set T𝑖 of local top-𝐾 items and frequency of items to a central machine. The central

machine obtains the global set U =
⋃𝑁
𝑖=1 T𝑖 , and then uses 𝐾 items with the largest estimated

frequency in U to form the set T ⊂ U of global top-𝐾 items.

Definition 2.3. (Top-𝐾-fairness) Given a top-𝐾-fair algorithm, for any data stream S𝑖 , let T𝑖 be
the set of local top-𝐾 frequent items reported by S𝑖 , and for any item 𝑢 (𝑖, 𝑗 ) ∈ T𝑖 , the following equation
holds:

𝐸

(
ˆ𝑓(𝑖, 𝑗 ) | 𝑢 (𝑖, 𝑗 ) ∈ T𝑖

)
= 𝛼 × 𝑓(𝑖, 𝑗 ) + 𝛿,

where 𝑓(𝑖, 𝑗 ) and ˆ𝑓(𝑖, 𝑗 ) are the real frequency and estimated frequency of item 𝑢 (𝑖, 𝑗 ) respectively, and 𝛼
and 𝛿 are two constants independent of data streams.

The existing research on fairness and equality mainly focuses on other areas. For example, the

previous work in the field of machine learning uses condition probability to define group fairness,
which requires that each decision has the same probability for members of different groups; the

previous work in the field of recommendation system uses ratio to define ranking fairness, which
requires that the attention received by each object is proportional to its relevance. Our definition of

fairness is inspired by these work, and adjusted to the scenario of disjoint data streams. We argue

that top-𝐾-fairness is an important property for algorithms in the task of finding global top-𝐾

items. It can avoid the influence of skewed data streams in the distributed scenarios: overestimated

algorithms will make frequent items in small data streams be easily ignored, while underestimated

algorithms will make frequent items in large data streams be easily ignored. If an algorithm achieves

top-𝐾-fairness, it means that its degree of overestimation or underestimation for the selected top-𝐾
items is a constant, i.e., not related to the data stream. Our algorithm achieves top-𝐾-fairness with

𝛼 = 1, 𝛿 = 0.

2.2 Unbiasedness v.s. Top-𝐾-fairness
Sketches [4, 6, 11, 12, 26, 30, 31, 34, 39, 41, 44, 44, 45, 49, 51] are a kind of probabilistic algorithm

which is often used to find top-𝐾 items due to its high speed and small memory consumption. There

are two kinds of top-𝐾 sketch algorithms, biased algorithm and unbiased algorithm. Biased top-𝐾

algorithms include SpaceSaving [29], Frequent [28], HeavyGuardian [52], Randomized Admission

Policy [5], and etc [10, 15, 37, 53, 54]. Because all these biased algorithm’s biases are highly related

to the data streams, they cannot achieve top-𝐾-fairness. Among all existing works, USS and
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WavingSketch [23] claim to be unbiased. However, it should be noted that unbiased algorithms are

not necessarily top-𝐾-fair. We discuss why both USS and WavingSketch are top-𝐾-unfair through

some brief mathematical analysis. We first show the definition of unbiased algorithm.

Definition 2.4. (Unbiased algorithm) When finding local top-𝐾 items in a single data stream
S𝑖 , the top-𝐾 algorithm maintains the estimated frequency ˆ𝑓(𝑖, 𝑗 ) of each item 𝑢 (𝑖, 𝑗 ) . The algorithm is
unbiased if

𝐸

(
ˆ𝑓(𝑖, 𝑗 )

)
= 𝑓(𝑖, 𝑗 ) ∀𝑢 (𝑖, 𝑗 ) ∈ U𝑖 ,

Unbiasedness v.s. top-𝐾-fairness: The main difference between our top-𝐾-fairness and unbi-

asedness is that the top-𝐾-fairness has an additional condition that 𝑢 (𝑖, 𝑗 ) ∈ T𝑖 . Take the USS for

example. Although USS is an unbiased algorithm, it estimates the frequency of all non-top-𝐾 items

as 0, i.e.,

𝐸

(
ˆ𝑓(𝑖, 𝑗 ) | 𝑢 (𝑖, 𝑗 ) ∉ T𝑖

)
= 0

𝐸

(
ˆ𝑓(𝑖, 𝑗 ) | 𝑢 (𝑖, 𝑗 ) ∈ T𝑖

)
=

𝑓(𝑖, 𝑗 )

Pr

(
𝑢 (𝑖, 𝑗 ) ∈ T𝑖

)
The amplification coefficient 𝛼 = 1

Pr(𝑢 (𝑖,𝑗 ) ∈T𝑖) varies largely among data streams, so USS cannot

achieve top-𝐾-fairness.

WavingSketch [23] achieves unbiasedness based on the Count sketch [7]. When an item’s es-

timated frequency is large, WavingSketch uses the heavy part to record its ID and frequency.

However, WavingSketch tends to favor recording the overestimated items in the heavy part, i.e.,
Pr

(
𝑢 (𝑖, 𝑗 ) ∈ T𝑖 | ˆ𝑓(𝑖, 𝑗 )

)
increases with

ˆ𝑓(𝑖, 𝑗 ) . This means

𝐸

(
ˆ𝑓(𝑖, 𝑗 ) | 𝑢 (𝑖, 𝑗 ) ∈ T𝑖

)
= 𝑓(𝑖, 𝑗 ) + 𝛿

and

𝛿 =

Cov
(
ˆ𝑓(𝑖, 𝑗 ) , Pr

(
𝑢 (𝑖, 𝑗 ) ∈ T𝑖 | ˆ𝑓(𝑖, 𝑗 )

))
Pr

(
𝑢 (𝑖, 𝑗 ) ∈ T𝑖

) > 0.

The deviation 𝛿 depends on not only the frequency distribution of the data stream, but also the

arrival order of the items. Therefore, WavingSketch cannot achieve top-𝐾-fairness.

In conclusion, no existing work achieves top-𝐾-fairness in the task of finding global top-𝐾 items.

2.3 The CMM Sketch
The CMM sketch [14] can provide an unbiased estimation of items’ frequency. Since we use the

CMM sketch as a component of our algorithm, we describe the data structure and operators of the

CMM sketch in detail in this section.

Data Structure: A CMM sketch consists of 𝑑 arrays, each of which includes𝑤 counters A[𝑖, 𝑗]
(1 ⩽ 𝑖 ⩽ 𝑑, 1 ⩽ 𝑗 ⩽ 𝑤 ) and is associated with a hash function ℎ𝑖 (·). Each hash function maps an

item to a counter uniformly at random.

Insertion: Given an incoming item 𝑒 , the CMM maps the counter A[𝑖, ℎ𝑖 (𝑒)] in each array and

increments each of them by 1.

Query: Given a query about item 𝑒 , the CMM can give the overestimation and unbiased estima-

tion of its frequency. The overestimation 𝐶𝑜𝑣𝑒𝑟 (𝑒) = min
𝑑
𝑖=1 A[𝑖, ℎ𝑖 (𝑒)]. The unbiased estimation

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 79. Publication date: May 2023.
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𝐶𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 (𝑒) is given by the following formula.

𝐶𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 (𝑒, 𝑖) = A[𝑖, ℎ𝑖 (𝑒)] −
1

𝑤 − 1

· (N − A[𝑖, ℎ𝑖 (𝑒)]) .

𝐶𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 (𝑒) =
1

𝑑
·
(
𝑑∑︁
𝑖=1

𝐶𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 (𝑒, 𝑖)
)
. (1)

Where N is the sum of the frequencies of all distinct items.

3 THE DOUBLE-ANONYMOUS SKETCH
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Fig. 2. An running example of the Hot panning version of the Double-Anonymous sketch with RA Policy.

In this section, we propose the Double-Anonymous sketch. We introduce three techniques of the

Double-Anonymous sketch by three progressive versions. We first introduce double-anonymity,

which is the key technique to achieve top-𝐾-fairness. Then we introduce hot panning, a tricky

technique that can keep the characteristic of double-anonymity and raise the Double-Anonymous

sketch’s accuracy at the same time. Finally, we introduce early freezing, a technique that can

further raise accuracy.

3.1 The Basic Version
Definition of double-anonymity: Suppose the estimation has already been unbiased, one suf-
ficient condition of top-𝐾-fairness is that the covariance of the result of finding top-𝐾 items and

estimating frequency is 0, i.e., they are unrelated. A more formal definition of double-anonymity
is shown in Theorem 3.1. Achieving double-anonymity means that the algorithm meets this

condition.

Theorem 3.1. (Double-anonymity) Given a single data stream S𝑘 and an item 𝑢 (𝑘,𝑖 ) ∈ U𝑘 , let
K(𝑖 ) be an indicator random variable indicating whether item 𝑢 (𝑘,𝑖 ) is selected as top-𝐾 (𝑢 (𝑘,𝑖 ) ∈ T𝑘 ),
if there is 𝐸

(
ˆ𝑓(𝑘,𝑖 )

)
= 𝑓(𝑘,𝑖 ) , then 𝐸

(
ˆ𝑓(𝑘,𝑖 ) | K𝑖 = 1

)
= 𝑓(𝑘,𝑖 ) is equivalent to Cov

(
K𝑖 , ˆ𝑓(𝑘,𝑖 )

)
= 0.

Proof. Under the condition of 𝐸

(
ˆ𝑓(𝑘,𝑖 )

)
= 𝑓(𝑘,𝑖 ) (unbiasedness),[

𝐸

(
ˆ𝑓(𝑘,𝑖 ) | K𝑖 = 1

)
= 𝑓(𝑘,𝑖 )

]
≡

[
𝐸

(
ˆ𝑓(𝑘,𝑖 ) | K𝑖 = 1

)
= 𝐸

(
ˆ𝑓(𝑘,𝑖 )

)]
.

Expanding 𝐸

(
ˆ𝑓(𝑘,𝑖 ) · K𝑖

)
, we have

𝐸

(
ˆ𝑓(𝑘,𝑖 ) · K𝑖

)
= 𝐸

(
ˆ𝑓(𝑘,𝑖 ) | K𝑖 = 1

)
· 𝐸 (K𝑖 )
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Therefore, [
𝐸

(
ˆ𝑓(𝑘,𝑖 ) | K𝑖 = 1

)
= 𝑓(𝑘,𝑖 )

]
≡

[
𝐸

(
ˆ𝑓(𝑘,𝑖 ) · K𝑖

)
= 𝐸

(
ˆ𝑓(𝑘,𝑖 )

)
· 𝐸 (K𝑖 )

]
≡

[
Cov

(
K𝑖 , ˆ𝑓(𝑘,𝑖 )

)
= 0

]
.

In the above formulas, ≡ stands for equivalence. □

The data structure of the basic version has two parts: a Randomized Admission Policy (RA)

[5] as the top-𝐾 part and a CMM sketch [14] as the count part. For an incoming item 𝑒 , 𝑒 will be

inserted into the RA and the CMM sketch independently. To find top-𝐾 items, we query the RA

and report the result. To query an item 𝑒’s frequency, we query the CMM sketch and report the

result. Notice that these two query processes are also independent. Obviously, the basic version is

double-anonymous and achieves top-𝐾-fairness.

3.2 The Hot Panning Version
Keeping the characteristic of double-anonymity, the hot panning version aims to pan the hot

items, and only record them in the top-𝐾 part to remove the redundancy compare to the first

version. We first use a top-𝐾 part to classify and record hot items, and then use a count part to

record the cold items. Because the top-𝐾 part pans the hot items, only cold items will be inserted

into the count part, which makes the Hot panning version accurate.

Data Structure: As shown in Figure 2, the Double-Anonymous sketch has two parts: a top-𝐾

part and a count part. The top-𝐾 part is an array of buckets B[0, . . . ,𝑚 − 1]. Each item will be

hashed into a bucket using ℎ(.), a hash function that maps each item to [0,𝑚 − 1] uniformly at

random. Each bucket has 𝜆 cells. Each cell records the information of one item: the item ID (key),

the strategy frequency (𝐶𝑠 ), and the real frequency (𝐶𝑟 ). The strategy frequency is a counter used

to decide whether this item should be evicted according to different replacement strategies. It is

often biased, i.e., overestimated or underestimated. The real frequency is another counter used to

record the number of appearances of this item after it was inserted into the top-𝑘 part. The count

part is a CMM sketch [14], which can provide an unbiased estimation and an overestimation value.

We detail CMM in Section 3.1.

Insertion:We first try inserting the incoming item into the top-𝐾 part. If the replacement strategy

thinks the item is frequent, we record it in the top-𝐾 part. Otherwise, we insert it into the count

part. Given an incoming item 𝑒 , we hash it into the bucket B[ℎ(𝑒)]. For any case, we first run

the replacement strategy of the Double-Anonymous sketch to find the top-𝐾 frequent items (we

implement four classic replacement strategies in Section 3.4 for case study). Usually, the replacement

strategy (e.g., SpaceSaving) will find the top-𝐾 frequent items and keep their ID in the top-𝐾 part

according to their strategy frequency𝐶𝑠 . To guarantee that the replacement strategy works properly,

the Double-Anonymous sketch rules that the ID and the strategy frequency can only be changed

by the replacement strategy. In other words, the replacement strategy works independently in

the top-𝐾 part. Then we run the unbiased operations of the Double-Anonymous sketch depend

on different cases to provide unbiased estimation for top-𝐾 items. The unbiased operations are

following this principle: if the incoming item 𝑒 is in the top-𝐾 part at that time, we use the top-𝐾

part to record this increment (it can avoid hot items inserting into the count part to minimize the

Double-Anonymous sketch’s error). Otherwise, we use the count part to record this increment.

There are three cases as follows.

Case 1: 𝑒 is in the bucket B[ℎ(𝑒)]. So we increment 𝑒.𝐶𝑟 by 1.
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Case 2: 𝑒 is not in the bucketB[ℎ(𝑒)].We insert 𝑒 into the count part: we use𝑑 other hash functions

𝑔1 (.) . . . 𝑔𝑑 (.) to map each item to [0, 𝑀 − 1], and increment the 𝑑 counters A[𝑔1 (.) . . . 𝑔𝑑 (.)] by 1,

which are called the 𝑑 mapped counters.
Case 3: An item 𝑒𝑒𝑣𝑖𝑐𝑡 is evicted by the replacement strategy. We increase the 𝑑 mapped counters

in the count part by 𝑒𝑒𝑣𝑖𝑐𝑡 .𝐶𝑟 , i.e., the real frequency of 𝑒𝑒𝑣𝑖𝑐𝑡 before the eviction. This operation

can transfer the frequency of 𝑒𝑒𝑣𝑖𝑐𝑡 from the top-𝐾 part to the count part. Therefore, we would not

lose the frequency information of 𝑒𝑒𝑣𝑖𝑐𝑡 when it was evicted.

Query: To estimate a local top-𝐾 item 𝑒 , we need to query both the top-𝐾 part and the count part.

The count part, i.e., CMM sketch[14], reports an overestimated value 𝐶𝑜𝑣𝑒𝑟 and an unbiased value

𝐶𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 . We report three kinds of estimation:

• an unbiased estimation value
ˆ𝑓𝑖 = 𝐶𝑟 +𝐶𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑

• an overestimation value 𝑓𝑖 = 𝐶𝑟 +𝐶𝑜𝑣𝑒𝑟
• an underestimated value 𝑓𝑖 = 𝐶𝑟

Notice that, if 𝑒.𝐶𝑜𝑣𝑒𝑟 = 0, 𝑓𝑖 will be equal to 𝑓𝑖 , which means the estimation 𝑓𝑖 or 𝑓𝑖 has no error.

Finding Top-𝐾 Items: In this task, we query the strategy frequencies of items in the top-𝐾 part

and sort it in descending order. Then we report the largest 𝐾 items as top-𝐾 items.

An running example: Figure 2 shows a running example of Hot panning version of the Double-

Anonymous sketch with Randomized Admission Policy. For each item recorded in the top-𝐾 part,

we record its item ID, strategy frequency (𝐶𝑠 ), and real frequency (𝐶𝑟 ). Notice that the process

of finding top-𝐾 and estimating frequency are Double-Anonymous, i.e., information that may

influence their covariance is not shared between these two processes. In the perspective of finding

top-𝐾 , 1) To insert 𝑒1, it successes, so we increment 𝑒1.𝐶𝑠 by 1. 2) To insert 𝑒2, it evicts 𝑒4 successfully

(according to the Randomized Admission Policy, the chance of success is
1

26
). Then we record 𝑒2

and make 𝑒2.𝐶𝑠 = 26. 3) To insert 𝑒3, we find an empty cell, so we just record 𝑒3 and make 𝑒3.𝐶𝑠 = 1.

In the perspective of estimating frequency, 1) To insert 𝑒1, it successes, so we increment 𝑒1.𝐶𝑟 by

1. 2) To insert 𝑒2, it successes, so we make 𝑒2.𝐶𝑟 to 1. At the same time, 𝑒4 is evicted, so we insert

𝑒4 × 20 into the count part, i.e., the mapped counters in the CMM sketch are increased by 20. 3) To

insert 𝑒3, we find an empty cell, so we just record 𝑒3 and make 𝑒3.𝐶𝑟 = 1.

3.3 The Early Freezing Version
As time goes by, the count part’s variance will increase with the increasing number of items

inserted into the count part. We propose using a freezing counter (𝐶𝑓 𝑟𝑒𝑒𝑧𝑖𝑛𝑔) to freeze the unbiased

estimation result in the count part (𝐶𝑠𝑘𝑒𝑡𝑐ℎ) for each frequent item as early as possible, so that we

can freeze the error of 𝐶𝑠𝑘𝑒𝑡𝑐ℎ and achieve a more accurate estimation. Specially, we add a freezing

counter for every cell in the top-𝐾 part. Inserting a new incoming item (i.e., an incoming item

not in the top-𝐾 part before this insertion), we make 𝐶𝑓 𝑟𝑒𝑒𝑧𝑖𝑛𝑔 = 𝐶𝑠𝑘𝑒𝑡𝑐ℎ at that moment. Then the

unbiased estimation result of an item 𝑒 change into 𝑒.𝐶𝑟 + 𝑒.𝐶𝑓 𝑟𝑒𝑒𝑧𝑖𝑛𝑔 instead of 𝑒.𝐶𝑟 + 𝑒.𝐶𝑠𝑘𝑒𝑡𝑐ℎ .
Because 𝐶𝑓 𝑟𝑒𝑒𝑧𝑖𝑛𝑔 is the earlier value of 𝐶𝑠𝑘𝑒𝑡𝑐ℎ , the variance of the unbiased estimation result will

be smaller.

3.4 Using Different Replacement Policies
The Double-Anonymous sketch can be applied by any top-𝐾 algorithm (replacement strategy).

We pick four classic top-𝐾 strategies: Randomized Replacement Strategy (RA) [5], Spacesaving

(SS) [29], Frequent (Freq) [28] and HeavyGuardian (HG) [52] as case studies. For each strategy, we

introduce how it works and how to apply it in the Double-Anonymous sketch (different replacement

strategies only modify the insertion operation of the Top-𝐾 part of the Double-Anonymous sketch).

Given an incoming item 𝑒 , we first hash it into B[ℎ(𝑒)]. Then the strategies work as follows.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 79. Publication date: May 2023.



79:10 Yikai Zhao, Wenchen Han, Zheng Zhong, Yinda Zhang, Tong Yang, and Bin Cui

RA Policy [5]: DS+RA (Double-Anonymous sketch with Randomized Admission Policy) runs the

Insertion operation of RA first. Suppose the item whose strategy frequency is smallest in the bucket

is 𝑒𝑚𝑖𝑛 . If 𝑒 is in the bucket, we increment 𝑒.𝐶𝑠 by 1. If 𝑒 is not in the bucket, we evict 𝑒𝑚𝑖𝑛 with the

probability of
1

𝑒𝑚𝑖𝑛 .𝐶𝑠+1 . If the eviction successes, we record 𝑒 with its𝐶𝑠 = 𝑒𝑚𝑖𝑛 .𝐶𝑠 + 1. To make the

estimation unbiased, DS+RA then runs the Insertion operation of the Double-Anonymous sketch

mentioned in Section 3.2.

SpaceSaving (SS) [29]: DS+SS (Double-Anonymous sketch with SpaceSaving) runs the Insertion

operation of SS first. Suppose the item whose strategy frequency is smallest in the bucket is 𝑒𝑚𝑖𝑛 . If

𝑒 is in the bucket, we just increment 𝑒.𝐶𝑠 by 1. If 𝑒 is not in the bucket, we evict 𝑒𝑚𝑖𝑛 and record 𝑒

with its 𝐶𝑠 = 𝑒𝑚𝑖𝑛 .𝐶𝑠 + 1. SpaceSaving’s estimation is overestimated. To make it unbiased, DS+SS
then runs the Insertion operation of the Double-Anonymous sketch mentioned in Section 3.2.

Frequent (Freq) [28]: DS+Freq (Double-Anonymous sketch with Frequent) runs the Insertion

operation of Freq first. If 𝑒 is in the bucket, we increment 𝑒.𝐶𝑠 by 1. If 𝑒 is not in the bucket, we

decrement the strategy frequency of every item in this bucket by 1. If the strategy frequency of an

item 𝑒𝑒𝑣𝑖𝑐𝑡 is decreased to 0, we evict 𝑒𝑒𝑣𝑖𝑐𝑡 and record 𝑒 with its 𝐶𝑠 = 1. Frequent’s estimation is

underestimated. To make it unbiased, DS+Freq then runs the Insertion operation of the Double-

Anonymous sketch mentioned in Section 3.2.

HeavyGardian (HG) [52]: DS+HG (Double-Anonymous sketch with HeavyGardian) runs the

Insertion operation of HG first. Suppose the item whose strategy frequency is smallest in the bucket

is 𝑒𝑚𝑖𝑛 . If 𝑒 is in the bucket, we increment 𝑒.𝐶𝑠 by 1. If 𝑒 is not in the bucket, we decrement 𝑒𝑚𝑖𝑛 .𝐶𝑠
by 1 with a probability of 1.08−𝑒𝑚𝑖𝑛 .𝐶𝑠 . If 𝑒𝑚𝑖𝑛 .𝐶𝑠 is decreased to 0, we evict 𝑒𝑚𝑖𝑛 and insert 𝑒 with

its 𝐶𝑠 = 1. HeavyGardian’s estimation is underestimated. To make it unbiased, DS+HG then runs

the Insertion operation of the Double-Anonymous sketch mentioned in Section 3.2.

We further discuss the differences between these four replacement policies based on the ex-

perimental results in Section 5, and show that our algorithm is general. Specially, In Section 5.4,

we show the degree of top-𝐾-unfairness of these four replacement policies, analyze how top-𝐾-

unfairness affects their performance in the task of finding global top-𝐾 items, and show that our

Double-Anonymous sketch can indeed make them top-𝐾-fair; In Section 5.5, we show a more

comprehensive performance comparison of Double-Anonymous sketch using different replacement

policies.

4 MATHEMATICAL ANALYSIS
In this section, we analyze the behavior of our hot panning version on a single data stream, and

prove that it meets top-𝐾-fairness. We then give some conclusions about the error of the algorithm.

We also discuss how to apply the proof process to the early freezing version.

4.1 Preliminary
We then define the state 𝑠 (𝑘,𝑡 ) of the Double-Anonymous sketch on data stream S𝑘 at time 𝑡

as 𝑠 (𝑘,𝑡 ) = {𝑠 (𝑘,1,𝑡 ) , · · · , 𝑠 (𝑘,𝑛𝑘 ,𝑡 ) }, where 𝑠 (𝑘,𝑖,𝑡 ) = ⟨𝑓𝑇 (𝑘,𝑖,𝑡 ) , 𝑓𝑆 (𝑘,𝑖,𝑡 )⟩. In general, let 𝑓𝑇 (𝑘,𝑖,𝑡 ) be the

frequency of item 𝑢 (𝑘,𝑖 ) recorded in the top-𝐾 part at time 𝑡 , and let 𝑓𝑆 (𝑘,𝑖,𝑡 ) be the frequency of

item 𝑖 recorded in the count part at time 𝑡 . In particular, if item 𝑢 (𝑘,𝑖 ) is not recorded in the top-𝐾

part at time 𝑗 , let 𝑓𝑇 (𝑘,𝑖,𝑡 ) = 0.

Given a data streamS𝑘 , let a sketching process R be a sequence of states of the Double-Anonymous

sketch at each time, i.e., R = {𝑠 (𝑘,1) , 𝑠 (𝑘,2) , · · · , 𝑠 (𝑘,𝑚𝑘 ) }. The replacement policy P determines the

distribution of the sketching process, i.e., R ∼ P(S𝑘 ).
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4.2 Proof of Top-𝐾-fairness
In this section, we prove that the Double-Anonymous sketch achieves top-𝐾-fairness. We first

give a lemma about the sketching process.

Lemma 4.1. Given a data stream S𝑘 and a sketching process R = {𝑠 (𝑘,1) , · · · , 𝑠 (𝑘,𝑚𝑘 ) }, for any item
𝑢 (𝑘,𝑖 ) and any time 𝑗 , there is

𝑓𝑇 (𝑘,𝑖,𝑡 ) + 𝑓𝑆 (𝑘,𝑖,𝑡 ) = 𝑓(𝑘,𝑖,𝑡 ) . (2)

Proof. When time 𝑡 = 0, for any item 𝑢 (𝑘,𝑖 ) , there is

𝑓𝑇 (𝑘,𝑖,0) = 𝑓𝑆 (𝑘,𝑖,0) = 𝑓(𝑘,𝑖,𝑡 ) = 0,

so there is

𝑓𝑇 (𝑘,𝑖,0) + 𝑓𝑆 (𝑘,𝑖,0) = 𝑓(𝑘,𝑖,0) .
Suppose that Equation 2 holds for any item 𝑢 (𝑘,𝑖 ) and any time 𝑡 < 𝑡 ′. At time 𝑡 = 𝑡 ′, according to
Section 3.2, if 𝑒 (𝑘,𝑡 ) = 𝑢 (𝑘,𝑖 ) , we insert frequency

(
𝑓𝑇 (𝑘,𝑖,𝑡 ′ ) − 𝑓𝑇 (𝑘,𝑖,𝑡 ′−1) + 1

)
into the CMM sketch of

the count part, thus

𝑓𝑆 (𝑘,𝑖,𝑡 ′ ) = 𝑓𝑆 (𝑘,𝑖,𝑡 ′−1) + 𝑓𝑇 (𝑘,𝑖,𝑡 ′ ) − 𝑓𝑇 (𝑘,𝑖,𝑡 ′−1) + 1

and

𝑓𝑇 (𝑘,𝑖,𝑡 ′ ) + 𝑓𝑆 (𝑘,𝑖,𝑡 ′ ) = 𝑓(𝑘,𝑖,𝑡 ′−1) + 1 = 𝑓(𝑘,𝑖,𝑡 ′ ) ;

If 𝑒 (𝑘,𝑡 ) ≠ 𝑢 (𝑘,𝑖 ) , we insert frequency
(
𝑓𝑇 (𝑘,𝑖,𝑡 ′ ) − 𝑓𝑇 (𝑘,𝑖,𝑡 ′−1)

)
into the CMM sketch of the count part,

thus

𝑓𝑆 (𝑘,𝑖,𝑡 ′ ) = 𝑓𝑆 (𝑘,𝑖,𝑡 ′−1) + 𝑓𝑇 (𝑘,𝑖,𝑡 ′ ) − 𝑓𝑇 (𝑘,𝑖,𝑡 ′−1)

and

𝑓𝑇 (𝑘,𝑖,𝑡 ′ ) + 𝑓𝑆 (𝑘,𝑖,𝑡 ′ ) = 𝑓(𝑘,𝑖,𝑡 ′−1) = 𝑓(𝑘,𝑖,𝑡 ′ ) ;
Therefore, Equation 2 also holds for 𝑡 = 𝑡 ′, so it holds for any time 1 ⩽ 𝑡 ⩽ 𝑚𝑘 . □

Now we prove the following lemma holds for any replacement policy P.

Lemma 4.2. Given a data stream S𝑘 . For any item 𝑢 (𝑘,𝑖 ) , let 𝑓𝑆 ′ (𝑘,𝑖,𝑡 ) be the estimate of 𝑓𝑆 (𝑘,𝑖,𝑡 )
given by the count part, and let ˆ𝑓(𝑘,𝑖 ) = 𝑓𝑇 (𝑘,𝑖,𝑚) + 𝑓𝑆 ′ (𝑘,𝑖,𝑚) be the estimation of 𝑓(𝑘,𝑖 ) given by the
Double-Anonymous sketch. For any replacement policy P, any sketching process R, there is

𝐸

(
ˆ𝑓(𝑘,𝑖 ) | R

)
= 𝑓(𝑘,𝑖 ) .

Proof. According to Lemma 4.1, in the sketching process R,
𝑓𝑇 (𝑘,𝑖,𝑚𝑘 ) + 𝑓𝑆 (𝑘,𝑖,𝑚𝑘 ) = 𝑓(𝑘,𝑖,𝑚𝑘 ) .

Since
ˆ𝑓(𝑘,𝑖 ) = 𝑓𝑇 (𝑘,𝑖,𝑚𝑘 ) + 𝑓𝑆 ′ (𝑘,𝑖,𝑚𝑘 ) , and 𝑓𝑇 (𝑘,𝑖,𝑚𝑘 ) is determined by sketching process R, we only

need to prove

𝐸
(
𝑓𝑆 ′ (𝑘,𝑖,𝑚𝑘 ) | R

)
= 𝑓𝑆 (𝑘,𝑖,𝑚𝑘 ) ,

Recall that we use a CMM [14] sketch as the count part. Specifically, assume that the count part

uses 𝑑 counter arrays, each of which has𝑤 counters and is associated with a hash function ℎ𝑙 (·).
ℎ𝑙 (·) maps each item 𝑢 (𝑘,𝑖 ) to one of the𝑤 counters uniformly at random.

We define some useful random variables. Let the indicator random variable 𝐼 (𝑖, 𝑗,𝑙 ) indicates
whether ℎ𝑙

(
𝑢 (𝑘,𝑖 )

)
and ℎ𝑙

(
𝑢 (𝑘,𝑗 )

)
are equal, thus we have

Pr

(
𝐼 (𝑖, 𝑗,𝑙 ) = 1

)
=

1

𝑤
.
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Let the random variable 𝑋 (𝑖,𝑙 ) be the value of the ℎ𝑙
(
𝑢 (𝑘,𝑖 )

)
-th counter in the 𝑙-th array, thus we

have

𝑓𝑆 ′ (𝑘,𝑖,𝑚𝑘 ) =
1

𝑑
·
(
𝑑∑︁
𝑘=1

(
𝑋 (𝑖,𝑙 ) −

1

𝑤 − 1

·
(
𝑛𝑘∑︁
𝑗=1

𝑓𝑆 (𝑘,𝑗,𝑚𝑘 ) − 𝑋 (𝑖,𝑙 )

)))
.

According to the rules of CMM, we have

𝑋 (𝑖,𝑙 ) = 𝑓𝑆 (𝑘,𝑖,𝑚𝑘 ) +
𝑛𝑘∑︁

𝑗=1, 𝑗≠𝑖

(
𝐼 (𝑖, 𝑗,𝑙 ) · 𝑓𝑆 (𝑘,𝑗,𝑚𝑘 )

)
.

We can obtain the conditional expectation of 𝑋𝑖,𝑘 , i.e.,

𝐸
(
𝑋 (𝑖,𝑙 ) | R

)
= 𝑓𝑆 (𝑘,𝑖,𝑚𝑘 ) +

1

𝑤
·
(

𝑛𝑘∑︁
𝑗=1, 𝑗≠𝑖

𝑓𝑆 (𝑘,𝑗,𝑚𝑘 )

)
.

Using the linear property of expectation again, we have

𝐸
(
𝑓𝑆 ′ (𝑘,𝑖,𝑚𝑘 ) | R

)
=
1

𝑑
·
(
𝑑∑︁
𝑘=1

(
𝑤

𝑤 − 1

· 𝑓𝑆 (𝑘,𝑖,𝑚𝑘 ) −
1

𝑤 − 1

· 𝑓𝑆 (𝑘,𝑖,𝑚𝑘 )
))

= 𝑓𝑆 (𝑘,𝑖,𝑚𝑘 ) .

□

Now we prove that the Double-Anonymous sketch achieves both unbiasedness and Double-

anonymity, thus achieving top-𝐾-fairness.

Theorem 4.3 (unbiasedness). Given a data stream S𝑘 . For any replacement policy P and any
item 𝑢 (𝑘,𝑖 ) , there is

𝐸

(
ˆ𝑓(𝑘,𝑖 )

)
= 𝑓(𝑘,𝑖 ) .

Proof. According to Lemma 4.2 and using the law of total expectation, we have

𝐸

(
ˆ𝑓(𝑘,𝑖 ) = 1

)
=

∑︁
R
𝐸

(
ˆ𝑓(𝑘,𝑖 ) | R

)
· Pr (R) = 𝑓(𝑘,𝑖 ) .

□

Theorem 4.4 (Double-anonymity). Given a data stream S𝑘 . For any replacement policy P
and any item 𝑢 (𝑘,𝑖 ) , let K𝑖 be an indicator random variable indicating whether item 𝑢 (𝑘,𝑖 ) is selected
as top-𝐾 , there is

Cov
(
ˆ𝑓(𝑘,𝑖 ) ,K𝑖

)
= 0.

Proof. Because sketching process R determines whether item 𝑢 (𝑘,𝑖 ) is selected as top-K, all R
can be divided into two kinds: R ∈ G0 makes K𝑖 = 0, and R ∈ G1 makes K𝑖 = 1. Therefore, we

expand 𝐸 ( ˆ𝑓(𝑘,𝑖 )K𝑖 ) as follows:

𝐸

(
ˆ𝑓(𝑘,𝑖 ) · K𝑖

)
=

∑︁
R∈G1

𝐸 ( ˆ𝑓(𝑘,𝑖 ) · K𝑖 |R) · Pr(R)

=

( ∑︁
R∈G1

Pr(R)
)
· 𝑓(𝑘,𝑖 ) = 𝐸 (K𝑖 ) · 𝑓(𝑘,𝑖 ) .
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Combined with unbiasedness, we have

Cov
(
ˆ𝑓(𝑘,𝑖 ) ,K𝑖

)
= 𝐸

(
ˆ𝑓(𝑘,𝑖 ) · K𝑖

)
− 𝐸

(
ˆ𝑓(𝑘,𝑖 )

)
𝐸 (K𝑖 ) = 0.

□

4.3 Error Bounds of Estimations
In this section, we give some theorems about the error bounds of estimations. The item frequencies

which are inserted into the count part are 𝑓𝑆 (𝑘,1,𝑚𝑘 ) , · · · , 𝑓𝑆 (𝑘,𝑛𝑘 ,𝑚𝑘 ) . According to lemma 4.1, they

are less than or equal to 𝑓(𝑘,1,𝑚𝑘 ) , · · · , 𝑓(𝑘,𝑛𝑘 ,𝑚𝑘 ) , i.e., 𝑓(𝑘,1) , · · · , 𝑓(𝑘,𝑛𝑘 ) . Based on this insight, we give

the following lemmas and theorems, which show that the Double-Anonymous sketch has tighter

error bounds than the sketches of CMM [14] and CM [10].

Lemma 4.5. Given a data stream S𝑘 , for any replacement policy P and any item 𝑢 (𝑘,𝑖 ) , let ˆ𝑓(𝑘,𝑖 ) be
the unbiased estimation of 𝑓(𝑘,𝑖 ) given by the Double-Anonymous sketch, then we have

𝐷

(
ˆ𝑓(𝑘,𝑖 )

)
⩽

1

𝑑 · (𝑤 − 1) ·
(
𝑛𝑘∑︁
𝑗=1

𝑓 2
𝑆 (𝑘,𝑗,𝑚𝑘 )

)
<

1

𝑑 · (𝑤 − 1) ·
(
𝑛𝑘∑︁
𝑗=1

𝑓 2(𝑘,𝑗 )

)
.

Where 𝑑 and𝑤 are parameters of the count part (CMM).

Proof. We first derive the upper bound of the conditional variance 𝐷

(
ˆ𝑓(𝑘,𝑖 ) | R

)
of a given item

𝑢 (𝑘,𝑖 ) in a given sketching process R. Recalling the definition of
ˆ𝑓(𝑘,𝑖 ) and 𝑓𝑆 ′ (𝑘,𝑖,𝑚𝑘 ) , we have

ˆ𝑓(𝑘,𝑖 ) =

𝑓𝑇 (𝑘,𝑖,𝑚𝑘 )

+ 1
𝑑
·
(
𝑑∑︁
𝑘=1

(
𝑋 (𝑖,𝑙 ) −

1

𝑤 − 1

·
(
𝑛𝑘∑︁
𝑗=1

𝑓𝑆 (𝑘,𝑗,𝑚𝑘 ) − 𝑋 (𝑖,𝑙 )

)))
. (3)

Since 𝑓𝑇 (𝑘,𝑖,𝑚𝑘 ) and 𝑓𝑆 (𝑘,𝑗,𝑚𝑘 ) are constants when then sketching process R is determined, we have

𝐷

(
ˆ𝑓(𝑘,𝑖 ) | R

)
=𝐷

(
1

𝑑
·
(
𝑑∑︁
𝑘=1

𝑤

𝑤 − 1

· 𝑋 (𝑖,𝑙 )

)
| R

)
=
1

𝑑2
·
(
𝑑∑︁
𝑘=1

(( 𝑤

𝑤 − 1

)
2

· 𝐷
(
𝑋 (𝑖,𝑙 ) | R

) ))
. (4)

By expanding 𝑋 (𝑖,𝑙 ) and considering the independence between 𝐼 (𝑖, 𝑗,𝑙 ) , we have

𝐷
(
𝑋 (𝑖,𝑙 ) | R

)
=
1

𝑤
·
(
1 − 1

𝑤

)
·
(

𝑛𝑘∑︁
𝑗=1, 𝑗≠𝑖

(
𝑓𝑆 (𝑘,𝑗,𝑚𝑘 )

)
2

)
⩽
1

𝑤
·
(
1 − 1

𝑤

)
·
(
𝑛𝑘∑︁
𝑗=1

(
𝑓𝑆 (𝑘,𝑗,𝑚𝑘 )

)
2

)
. (5)

In other words

𝐷

(
ˆ𝑓(𝑘,𝑖 ) | R

)
⩽

1

𝑑 · (𝑤 − 1) ·
(
𝑛𝑘∑︁
𝑗=1

(
𝑓𝑆 (𝑘,𝑗,𝑚𝑘 )

)
2

)
. (6)
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Since we derive the unbiasedness and conditional unbiasedness of the estimated frequency
ˆ𝑓(𝑘,𝑖 ) in

Theorem 4.3 and Lemma 4.2, that is

𝐸

(
ˆ𝑓(𝑘,𝑖 ) | R

)
= 𝐸

(
ˆ𝑓(𝑘,𝑖 )

)
= 𝑓(𝑘,𝑖 ) , (7)

by using the law of total expectation, we have

𝐷

(
ˆ𝑓(𝑘,𝑖 )

)
=
∑︁
R
𝐸

((
ˆ𝑓(𝑘,𝑖 ) − 𝑓(𝑘,𝑖 )

)
2

| R
)
· Pr (R)

⩽
1

𝑑 · (𝑤 − 1) ·
(
𝑛𝑘∑︁
𝑗=1

(
𝑓𝑆 (𝑘,𝑗,𝑚𝑘 )

)
2

)
.

According to Lemma 4.1, we have

1

𝑑 · (𝑤 − 1) ·
(
𝑛𝑘∑︁
𝑗=1

(
𝑓𝑆 (𝑘,𝑗,𝑚𝑘 )

)
2

)
⩽

1

𝑑 · (𝑤 − 1) ·
(
𝑛𝑘∑︁
𝑗=1

𝑓 2(𝑘,𝑗 )

)
. (8)

The left and right sides are the upper bounds of variance of the Double-Anonymous sketch and the

CMM sketch, respectively. □

Theorem 4.6. Given a data stream S𝑘 , for any replacement policy P and any item 𝑢 (𝑘,𝑖 ) , let ˆ𝑓(𝑘,𝑖 )
be the unbiased estimation of 𝑓(𝑘,𝑖 ) given by the Double-Anonymous sketch, then we have

Pr

(��� ˆ𝑓(𝑘,𝑖 ) − 𝑓(𝑘,𝑖 )
��� ⩾ 𝜀) ⩽ 1

𝜀2 · 𝑑 · (𝑤 − 1) ·
(
𝑛𝑘∑︁
𝑗=1

𝑓 2
𝑆 (𝑘,𝑗,𝑚𝑘 )

)
<

1

𝜀2 · 𝑑 · (𝑤 − 1) ·
(
𝑛𝑘∑︁
𝑗=1

𝑓 2(𝑘,𝑗 )

)
.

Theorem 4.7. Given a data stream S𝑘 , for any replacement policy P and any item 𝑢 (𝑘,𝑖 ) , let 𝑓 (𝑘,𝑖 )
be the overestimation of 𝑓(𝑘,𝑖 ) given by the Double-Anonymous sketch, then we have

Pr

(��� 𝑓 (𝑘,𝑖 ) − 𝑓(𝑘,𝑖 ) ��� ⩾ 𝜀) ⩽ (
1

𝜀 ·𝑤 ·
(
𝑛𝑘∑︁
𝑗=1

𝑓𝑆 (𝑘,𝑗,𝑚𝑘 )

))𝑑
<

(
1

𝜀 ·𝑤 ·
(
𝑛𝑘∑︁
𝑗=1

𝑓(𝑘,𝑗 )

))𝑑
.

4.4 Analysis on Early Freezing
By using the early freezing optimization, the Double-Anonymous sketch gives a more accurate

item frequency estimation
˜𝑓(𝑘,𝑖 ) = 𝑓𝑇 (𝑘,𝑖,𝑚𝑘 ) + 𝑓𝑆 ′ (𝑘,𝑖,𝑡𝑖 ) , where 𝑡𝑖 is the time when item 𝑢 (𝑘,𝑖 ) is

recorded in the top-K part. In particular, 𝑡𝑖 = 𝑚𝑘 when item 𝑢 (𝑘,𝑖 ) is not recorded. On the one

hand, following the proof framework in Section 4.2 and 4.3 and replacing 𝑓𝑆 ′ (𝑘,𝑖,𝑚𝑘 ) with 𝑓𝑆 ′ (𝑘,𝑖,𝑡𝑖 ) ,
we can still prove the top-𝐾-fairness and derive the error bound of the early freezing version; On

the other hand, according to Lemma 4.8 shown below, we know that the variance of 𝑓𝑆 ′ (𝑘,𝑖,𝑡𝑖 ) is
smaller than that of 𝑓𝑆 ′ (𝑘,𝑖,𝑚𝑘 ) in any sketching process R, so we have Theorem 4.9.

Lemma 4.8. Given a data stream S𝑘 and a sketching process R = {𝑠 (𝑘,1) , · · · , 𝑠 (𝑘,𝑚) }, for any item
𝑢 (𝑘,𝑖 ) and any time 𝑗 , there is

𝑓𝑆 (𝑘,𝑖, 𝑗−1) ⩽ 𝑓𝑆 (𝑘,𝑖,𝑡 ) .
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Theorem 4.9. Given a data stream S, for any replacement policy P and any item 𝑢 (𝑘,𝑖 ) , we have

𝐷

(
˜𝑓(𝑘,𝑖 )

)
⩽ 𝐷

(
ˆ𝑓(𝑘,𝑖 )

)
.

 Hot Panning  Early Freezing
 Loose Bound     Tight Bound

w

(a) P: SpaceSaving

 Hot Panning  Early Freezing
 Loose Bound     Tight Bound

w

(b) P: Randomized Admission Policy

Fig. 3. Sample variances and their theoretical upper bounds.

4.5 Experimental Verification
To verify the correctness of Lemma 4.5 and Theorem 4.9, we show two kinds of variance

bound. Lemma 4.5 provides a P-independent loss bound, and an R-dependent tight bound. We use

SpaceSaving and Randomized Admission Policy as the strategy P, and vary the length𝑤 of the

count part. As shown in Figure 3, we plot the loose upper bounds, the tight upper bounds, and the

sample variances of the hot panning version and the early freezing version. It can be found that the

bounds of variances are always greater than the sample variances of the hot panning version, and

then greater than the sample variances of the early freezing version, which verifies our theorems

and shows the benefits of Early Freezing. It is worth noting two points: 1) The tight bounds are

extremely close to the sample variances, which indicates our bounds are accurate. 2) Panning hot

items to reduce the redundancy is beneficial to reduce variance, and the strategy of finding top-𝐾

frequent items more accurately has a smaller variance.

5 EXPERIMENTAL RESULTS
5.1 Experimental Setup
A. Implementation: We have implemented the Double-Anonymous sketch (DA sketch) and all

other algorithms in C++. We apply four replacement strategies to the DA sketch: Randomized

Admission Policy (RA) [5], SpaceSaving (SS) [29], Frequent (Freq) [28] and HeavyGuardian (HG)

[52]. We find in our experimental results that applying Randomized Admission Policy yields the

best results; therefore, we mainly demonstrate the experimental results of DA sketch + RA. We

also compare our results with several state-of-the-art top-𝐾 sketching algorithms: Frequent [28],

SpaceSaving [29], Unbiased SpaceSaving (USS) [46] and WavingSketch (Waving) [23]. All our

experiments are repeatedly performed 10 times to ensure statistical stability. Our source code is

publicly available at Github [3]. We conduct all our experiments on a machine with two 6-core

processors (12 threads, Intel Xeon CPU E5-2620 @2 GHz) and 64 GB DRAM memory.

B. Datasets: We use three real-world datasets and one synthetic dataset for our experiments. The

details of the datasets are shown below: 1) IP Trace Dataset (CAIDA) [2]: The IP Trace Dataset

consists of streams of anonymous IP traces collected by CAIDA in 2016. Each item is identified by

its 13-byte "5-Tuple". We use the first 20M items for our experiments. 2) Web Page Dataset [1]: The

Web page dataset is built from a collection of web pages downloaded from the website. Each item
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is 4 bytes long. 3) Network Dataset [22]: The network dataset consists of users’ posting history

on the StackExchange website. 4) Synthetic Dataset: We generated datasets following the Zip-f

distribution [35]. Each dataset contains 32M items, and each item is 4 bytes long. Here we use the

generated dataset with skewness=0.6.

C. Metrics:

1) Average Relative Error (ARE):
1

|𝛹 |
∑
𝑒𝑖 ∈𝛹

| 𝑓𝑖− ˆ𝑓𝑖 |
𝑓𝑖

, where 𝑓𝑖 is the ground truth frequency of item

𝑒𝑖 , ˆ𝑓𝑖 is its estimated frequency, and𝛹 is the query set.

2) F1 Score:
2∗𝐶𝑅∗𝑃𝑅
𝐶𝑅+𝑃𝑅 , where 𝑃𝑅 (Precision rate) represents the proportion of the correctly selected

items among all the selected items, and 𝐶𝑅 (Recall rate) represents the proportion of the correctly

selected items among all the real top-𝐾 items.

3) Throughput: The number of operations (insertions) in million per second (Mops). It indicates

the overall speed of insertion.

4) Zero Error Rate: The proportion of items selected by our sketch whose estimated frequency is

guaranteed to be exactly the same as its ground truth frequency.

5) Relative Bias: This metric is used in section 5.4. For the local sketch 𝑖 , the relative bias is defined∑
𝑒𝑗 ∈𝛹

ˆ𝑓𝑗∑
𝑒𝑗 ∈𝛹 𝑓𝑗

, where𝛹 is the set of items that local sketch 𝑖 returns as the local top-𝐾 items.

6) Recall on Aggregation:
| | { ( ˆT𝑖∩T)∩ ˆT} | |

| | { ˆT𝑖∩T} | | for local sketch 𝑖 , where T denotes the set of global

top-𝐾 items,
ˆT denotes the set of predicted global top-𝐾 items (after aggregation), and

ˆT𝑖 denotes
the selected local top-𝐾 items from sketch 𝑖 .

D. Common Settings: Let𝑀 denote the total amount of memory allocated to the sketches,𝑀𝑡𝑜𝑝−𝐾
denote the amount of memory allocated to the top-𝐾 part for the DA sketch, 𝐾 denote that we

query the top-𝐾 frequent items, and 𝜆 denotes the number of cells in each bucket of the top-𝐾 part.

For the DA sketch, we set 𝜆 = 8,

𝑀𝑡𝑜𝑝−𝐾
𝑀

= 0.55 in order to maximize the overall performance. 5 For

DA sketch, the size of count part’s buckets in the Hot Panning version and the Early Freezing is set

to be 2 bytes; while for the basic version, the size of count part’s buckets is set to be 4 bytes. All

other parameters of the baseline top-𝐾 algorithms are set according to the recommendations of

their authors.

Settings for Figure 1(a) in Section 1.2: We perform the finding local top-𝐾 tasks on CAIDA

dataset for both USS and Waving, for 1000 times each. Memory size is set to be 100KB, and 𝐾 is set

to be 1000. After insertion, we calculate the total (signed) error for both the selected Top-𝐾 items

and items that are not selected. We average the results over the 1000 times of experiments.

Settings for Figure 1(b) in Section 1.2: We conduct experiments on the Synthetic Dataset. We

generate the dataset so that the global Top-1 item is always in the light stream. We set 𝑁 = 100, 𝐾 =

50 and range skewness from 0.1 to 0.4. We only allocate an extremely small amount of memory

for both USS and Ours+SS, such that they could only store 𝐾 = 50 local top-𝐾 candidates for each

distributed sketch (3.8KB for USS and 1.4KB for Ours+SS). In such an extremely small amount

of memory and high skewness, the estimated frequency of the selected local top-𝐾 items in the

heavy stream would even be greater than the frequency of the global Top-1 item in the light stream.

Therefore, the global Top-1 may be ignored when skewness is high.

5.2 Experiments on Local Top-𝐾
Application Description: We first conduct experiments on finding local top-𝐾 items and compare

the Double-Anonymous sketch with prior art mentioned in 5.1. We use ARE, F1 Score, and Zero

Error rate for evaluation. We also compare the performance of our three versions, i.e., the basic
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Fig. 4. Performance of finding local top-𝐾 items.

version, the Hot Panning Version, and the Early Freezing Version, and show how hot panning and

early freezing improve the performance of our approach.

Experimental Settings: In this experiment, we use the CAIDA dataset for our experiments. We

set 𝐾 = 1000, and range the memory size from 100KB to 500KB for all sketches to see how different

sketches perform in different amounts of memory.

ARE (Figure 4(a)): Results show that our approach achieves much more accurate unbiased fre-

quency estimation thanks to the hot panning and early freezing technique. When𝑀 = 100KB, our

approach is around 500-1000 times more accurate than USS, SS, and Frequent and around 50-100

times more accurate than Waving on the CAIDA dataset.

F1 Score (Figure 4(b)):When applying RA to our approach, the Double-Anonymous sketch achieves

sufficiently high F1 Score (≥ 95%) even when memory is extremely tight. This is because for the

Double-Anonymous sketch, local top-𝐾 items’ selection is determined by only the replacement

policy, and RA itself is accurate in selecting local top-𝐾 items. In contrast, Frequent, USS, and SS are

much more inaccurate in finding top-𝐾 items. The discussion will be further elaborated in section

5.3.

Zero Error Rate (Figure 4(c)): We demonstrate the proportion of items of which we are confident

that frequency estimation error is guaranteed to be 0 (as denoted by zero error rate). We could

determine this because 𝐶𝑓 𝑟𝑒𝑒𝑧𝑖𝑛𝑔 = 0 indicates that such item has never been evicted from the

Top-𝐾 part throughout the process. The results show that our approach achieves a zero error rate

greater than 40% when memory is as tight as 100KB, and greater than 72% when𝑀 = 500KB. The

results suggest that for the majority of items, our algorithm could tell with 100% confidence that

their estimated frequencies are perfectly accurate, which is useful in practice.

Comparison between the three versions (Figure 4(d)): We find that both the hot panning and

early freezing significantly improve the accuracy of our unbiased frequency estimation. On average,

the final version — the early freezing version is approximately 66 times more accurate than the first
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Fig. 5. Performance of finding global top-𝐾 items.

version — the basic version and approximately 10 times more accurate than the second version —

the hot panning version.

5.3 Experiments on Global Top-𝐾 with Same Sizes across Different Data Streams
Application Description: In a distributed scenario, there are 𝑁 data streams S1, · · · ,S𝑁 . Data
stream S𝑖 contains𝑚𝑖 items. Each data stream is measured by a sketch on one machine. Memory

sizes of all the sketches on different data streams are set the same. We denote S =
⋃𝑁
𝑖=1 S𝑖 . In

different scenarios, the skewness of the size distribution across different data streams could be

small or large. We set𝑚1 = 𝑟 ∗ |S|, and𝑚𝑖 =
1−𝑟
𝑁−1 |S|, 𝑖 ≥ 2, where 𝑟 ≥ 1

𝑁
represents the skewness

of the size distribution across different data streams. We denote S1 as a heavy stream, and other

data streams as light streams. In this subsection, we focus on the case when the sizes of different

data streams are the same, i.e., 𝑟 = 1

𝑁
.

Experimental settings: We use all the four datasets mentioned in 5.1 for our experiments. There

are in total 𝑁 = 10 data streams, and we select 𝐾 = 1000 global top-𝐾 items. We allocate the same

amount of memory for each sketch on different machines, and the total memory size for the 𝑁 = 10

sketches in total ranges from 100KB to 500KB.
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ARE (Figure 5(a) - 5(d)): We find that our approach could achieve much lower ARE than prior art.

On CAIDA dataset, when𝑀 = 100KB, ARE of our approach is 3 orders of magnitude times lower

than Frequent, USS, SS, and 70 times lower than Waving. We observe similar results on the other

three datasets.

F1 Score (Figure 5(e) - 5(h)): Results show that in this scenario, our approach could achieve a high

F1 Score on both datasets even when𝑀 is small. When𝑀 = 100KB, the F1 Score of our approach is

greater than 90% on both datasets, while the F1 Score of Frequent, USS, and SS is lower than 60% on

the Webpage dataset and lower than 40% on the rest of the datasets. We also find that our approach

achieves a slightly better F1 Score than Waving .

Throughput (Table 1): Our approach achieves higher or comparable throughput compared with

prior art. Specifically, the throughput of our approach is on average 3.19, 2.89 and 3.15 times higher

than Frequent, USS, and SS respectively over the four datasets, and is comparable with Waving.

CAIDA Webpage Net Synthesis

Frequent (300KB) 5.3 6.2 4.5 5.1

USS (300KB) 5.4 6.9 5.3 5.7

SS (300KB) 5.9 6.4 4.8 4.7

Waving (300KB) 14.8 21.2 13.4 16.8

Ours + RA (300KB) 14.9 25.5 12.7 15.6

Table 1. Throughput (Mops) of finding top-𝐾 frequent items.

Analysis: 1) Our approach is accurate in frequency estimation on global top-𝐾 items even with

extremely small memory. Prior works, like Frequent, USS, and SS tend to provide highly underesti-

mated or overestimated frequency estimation, so their frequency estimation tends to be significantly

inaccurate. Waving sketch is also not as accurate as our approach because when memory is tight,

Waving counters tend to be highly inaccurate. 2) F1 Score of our approach is mainly determined by

the top-𝐾 replacement strategy, and when applying Randomized Admission Policy (RA) replace-

ment strategy to our approach, the Double-Anonymous sketch could achieve a high F1 Score on

both the local top-𝐾 task and the global top-𝐾 task. F1 Score of Frequent, USS, and SS is significantly

lower than our approach since all of them use the Stream Summary [29] data structure, which

consumes more memory to store one item than our approach, and those replacement strategies

are not as accurate as the RA replacement strategy. 3) Both our approach and Waving sketch use

bucket-array data structure, which is cache-friendly and requires fewer memory access, resulting

in higher insertion throughput. For Frequent, USS, and SS, frequent pointer operations would lead

to cache misses, making the insertion much slower.

5.4 Experiments on Top-𝐾-fairness with Highly Skewed Data Streams’ Sizes

5.4.1 Experimental Setup

In this subsection, we focus on the case when the size distribution is highly skewed. We show

why top-𝐾-fairness is important in finding global top-𝐾 items in this scenario. We apply four

replacement policies to the Double-Anonymous sketch and compare our results with four biased

algorithms: Frequent, SS, HG, and RA, and two unbiased algorithms: USS, and Waving. F1 Score is

used to demonstrate the overall performance of those algorithms. Relative bias is used to directly

demonstrate the top-𝐾-fairness of our approach and the top-𝐾-unfairness of prior art. Considering

the global top-𝐾 aggregation: before that, sketch 𝑖 proposes several local top-𝐾 candidates, and
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Fig. 6. Performance and fairness for finding global top-𝐾 items comparing our approaches with baseline
algorithms.

some of them are real global top-𝐾 items. Among those real global top-𝐾 items proposed by sketch

𝑖 , only a proportion of them survive and are selected as global top-𝐾 items. Recall on aggregation,

which refers to the proportion mentioned above, is used to demonstrate the top-𝐾-fairness of the

global top-𝐾 selector on aggregation. Specifically, we use this metric to answer our questions: does
the global top-𝐾 selector favors items from heavy machines or from light machines, or is the global
top-𝐾-fair so that it selects global top-𝐾 items solely based only on their real frequency, regardless of
which local sketch it comes from.

Frequent SS HG RA USS Waving Ours

40KB 40KB 15KB 15KB 40KB 15KB 15KB

Table 2. Memory size configurations in Section 5.4

Experimental Settings: We set 𝑁 = 100, 𝐾 = 1000, and vary the skewness 𝑟 from 0.01 to 0.5. In

order to better demonstrate how top-𝐾-fairness affects the performance and eliminate the effects
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of selecting local top-𝐾 items itself on the performance of finding global top-𝐾 items, we adjust the

memory sizes for different algorithms so that they could store exactly the same number of local

top-𝐾 candidates. The configurations on memory size are shown in Table 2. We use the synthetic

dataset with skewness=0.9, which is relatively low in skewness, to better demonstrate the concept

of "top-𝐾-fairness" and illustrate our results.

5.4.2 Overall Performance & Top-𝐾-fairness

F1 Score (Figure 6(a) and 6(e)): Results show that when skewness increases, our F1 Score

degradation is much slower than all the prior art. Specifically, when skewness 𝑟 = 0.5, Ours +

Frequent achieves F1 Score ≥ 73%, while Frequent itself only achieves F1 Score ≤ 48%; Ours + SS

achieves F1 Score ≥ 72%, while SS itself only achieves F1 Score ≤ 31%. Ours + RA achieves F1 Score

≥ 98%, while RA itself only achieves F1 Score ≤ 83%. Ours + HG achieves F1 Score ≥ 95%, while HG

itself only achieves F1 Score ≤ 76%. F1 Score of Waving Sketch and USS is 62%, 30% respectively,

which is also significantly lower than that of our approach.

Relative Bias on Top-𝐾 items (Figure 6(b) and 6(f)): Results show that SS, USS and Waving

tend to provide overestimated frequency. For these algorithms, items in heavy machines tend to be

overestimated much more than light machines, so the global top-𝐾 selector tends to favor items in

heavy machines. Similarly, Frequent, RA, and HG tend to provide underestimated frequency, and

items in heavy machines tend to be underestimated much more, so the global top-𝐾 selector tends

to favor items in light machines. More detailed recall rates on aggregation are shown in Section

5.4.3.

Analysis: 1) One of the desired properties that top-𝐾-fairness brings is that the F1 Score of top-𝐾-

fair algorithms, like our Double-Anonymous sketch, tends to be higher than top-𝐾-unfair algorithms.

For example, for SS and USS, local top-𝐾 candidates in heavy machines tend to be highly overesti-

mated, so even if an item in heavy machines is low in real frequency, its estimated frequency is still

high enough to be falsely selected as a global top-𝐾 item. With items in heavy machines falsely

selected as global top-𝐾 items and items in light machines ignored, the F1 Scores of SS and USS

become unacceptably low when skewness is large. 2) The degree of top-𝐾-unfairness of algorithms

is often negatively related to their F1 scores. Specifically, the top-𝐾-unfairness of SS, USS, and

Frequent is very significant, so their F1 scores are lower than other algorithms. Although Waving,

RA, and HG are also top-𝐾-unfair, their top-𝐾-unfairness is relatively slight, so they have higher F1

scores. For top-𝐾-fair algorithms, the accuracy of the replacement policy they use determines their

performance, so Ours+RA and Ours+HG have the highest F1 scores. 3) Our approach is generic:

we can make any top-𝐾 algorithm top-𝐾-fair simply by applying the Double-Anonymous sketch

to this top-𝐾 algorithm. Meanwhile, the F1 Score is also much improved because our approach is

top-𝐾-fair in global top-𝐾 aggregation. Specifically, for top-𝐾 algorithms Frequent and SS with

significant top-𝐾-unfairness, our DA sketch can improve their F1 scores by up to 25.5% and 42.5%;

and for top-𝐾 algorithms RA and HG with slight top-𝐾-unfairness, our DA sketch can still improve

their F1 scores by 15.0% and 19.8%.

5.4.3 Recall on Aggregation

Recall on Aggregation (Figure 6(c) - 6(d) and 6(g) - 6(h)): For light machines, we find that Recall

on Aggregation of overestimation algorithms, like SS, USS, andWaving, decreases fast as 𝑟 increases,

while that of other algorithms keeps at a high level (≥ 90%). Conversely, for heavy machines, Recall

on Aggregation of underestimation algorithms like Frequent, RA, and HG, decreases as 𝑟 increases,

while other algorithms remain ≥ 90%. It can be concluded that for overestimation algorithms, it
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is more difficult for items in light machines to survive the global aggregation and be selected as

global top-𝐾 items; for underestimation algorithms, it is more difficult for items in heavy machines

to be selected as global top-𝐾 items.

Analysis: Top-𝐾-fairness is determined by the bias of frequency estimation on top-𝐾 items. For

overestimation sketches like SS, USS, andWaving, many local top-𝐾 candidates from light machines

that are supposed to become global top-𝐾 items would actually be evicted during aggregation

(Recall on Aggregation on light machines tends to be small). It can be concluded that the global

top-𝐾 selector favors items from heavy machines. Conversely, for underestimation sketches like

Frequent, RA, and HG, global top-𝐾 selector tends to favors items from light machines. We argue

that top-𝐾-unfair aggregation is unacceptable in many real-world applications since the global

top-𝐾 selector should not be partial to items from any machine.
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Fig. 7. Performance and fairness of weighted algorithms for finding global top-𝐾 items.

5.4.4 Other Baseline Algorithms

Comparison algorithms: In this section, we compare two other baseline algorithms designed for

skewed data streams: algorithms based on global sampling and algorithms based on weighting. For

sampling algorithms, we use the same sampling rate for each data stream to sample items and send

them to the global top-𝐾 selector. On the global top-𝐾 selector, we use sketch data structures or

directly use deterministic data structures (e.g., maps) to find global top-𝐾 items in the sampled data

stream. For weighted algorithms, we maintain sketch data structures of different sizes on different

machines according to the number of items contained in the data stream. Specifically, if the data

stream on the heavy machine contains 10 times as many items as that on the light machine, the

sketch size on the heavy machine is set to be 10 times as large as that on the light machine.

DA sketch v.s. weighted algorithms (Figure 7): We compare weighted USS, weighted Waving,

and weighted Ours+RA. As shown in Figure 7(b), for weighted USS and weighted Waving, their
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overestimation on heavy machines is reduced, but their overestimation on light machines is

significantly increased. This is due to the non-linear relationship between their overestimation

and the size of the data stream. However, as shown in Figures 7(a), 7(c), and 7(d), weighting can

indeed improve the performance of USS andWaving, especially when the distribution is particularly

skewed. Specifically, when 𝑟 = 0.5, the F1 score of weighted USS is 57.9%, that of weighted Waving

is 96.4%, and that of weighted Ours+RA is 99.0%.

DA sketch v.s. sampling algorithms (Table 3): We compare with the sampling algorithms

using different sampling rates and different global data structures on global top-𝐾 selectors. The

experimental results show that higher sampling rate means higher accuracy, but the performance

of the sampling algorithm using 0.1 sampling rate and precise global data structure is still inferior

to Ours+RA. Furthermore, using a sampling algorithm with a rate of 𝑝 = 0.1, in total all machines

need to transmit 8MB of data to the global top-𝐾 selector; using a sampling algorithm with a rate

of 𝑝 = 0.02, all machines need to transmit 1.6MB of data. By contrast, using Ours+RA, all machines

only need to transmit 100 × 15𝐾𝐵 = 1.5𝑀𝐵 of data.

Algorithms F1 Score ARE

Sampling (𝑝 = 0.02) + Precise 85.8% 0.1234

Sampling (𝑝 = 0.1) + Precise 94.3% 0.0576

Sampling (𝑝 = 0.02) + RA 68.3% 0.1367

Sampling (𝑝 = 0.1) + RA 73.4% 0.0958

Ours + RA (𝑟 = 0.5) 98.0% 0.0069

Table 3. Comparisons between the sampling approach and our approach, where "precise" indicates that we
use a deterministic algorithm to precisely record every sampled item.

Analysis: For the two comparison algorithms, the sampling algorithms are top-𝐾-fair, and the

weighted algorithms can indeed improve the performance. However, our algorithm still shows its

superiority over the two algorithms. In addition, there is another artificial weighted algorithm:

manually correct the overestimation or underestimation of reported top-𝐾 items from different data

streams. However, as shown in Section 5.4.2, the overestimation and underestimation of different

algorithms are not consistent. On the one hand, this algorithm is difficult to practice, and on the

other hand, it cannot achieve the exact top-𝐾-fairness.

5.5 Experiments on Parameter Settings
In order to find the optimal parameter settings for the Double-Anonymous sketch, we conduct

experiments on finding local top-𝐾 items and vary 𝜆 and
𝑀𝑡𝑜𝑝−𝐾
𝑀

to see how AAE, ARE, F1 Score

and Throughput change. We set𝑀 to be 100KB, 𝜆 to range from 1 to 64, and

𝑀𝑡𝑜𝑝−𝐾
𝑀

to range from

0.05 to 0.95.

Varying 𝜆 (Figure 8(a)-8(b)): We find that, as 𝜆 increases from 1 to 64, ARE of Our+RA and

Ours+SS first decreases when 𝜆 grows from 1 to 8 by 6.8 times and 3.2 times respectively and

then remains steady. For Ours+HG and Ours+Freq, ARE keeps roughly steady. However, as 𝜆

increases, the throughput of all Double-Anonymous sketch applications drops severely: on average,

throughput when 𝜆 = 64 is 2.3 times smaller than throughput when 𝜆 = 1. Therefore in practice,

we choose 𝜆 = 8 as the best setting.

Varying
𝑀𝑡𝑜𝑝−𝐾
𝑀

(Figure 8(c)-8(d)): We find that F1 scores grow as

𝑀𝑡𝑜𝑝−𝐾
𝑀

increases, since F1 scores

are only determined by the top-𝐾 part. However, we find that when

𝑀𝑡𝑜𝑝−𝐾
𝑀

≥ 0.55, growth rate

of F1 scores of all Double-Anonymous sketch applications becomes slow if

𝑀𝑡𝑜𝑝−𝐾
𝑀

continues to
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Fig. 8. Experiments on different parameter settings (𝜆 and
𝑀𝑡𝑜𝑝−𝐾
𝑀

) of Double-Anonymous Sketch.

increase. In addition, in this experiment,𝑀 = 100KB is tight, and if𝑀 becomes larger, growth of

F1 scores contributed by

𝑀𝑡𝑜𝑝−𝐾
𝑀

will become more negligible. Besides, Ours+HG and Ours+RA

reach their respective minimal ARE score when

𝑀𝑡𝑜𝑝−𝐾
𝑀

≈ 0.55 (2.7 and 1.8 times smaller than

when

𝑀𝑡𝑜𝑝−𝐾
𝑀

= 0.05 and 2.5 and 3.0 times smaller than when

𝑀𝑡𝑜𝑝−𝐾
𝑀

= 0.95), while Ours+Freq and

Ours+SS reach their minimal ARE when

𝑀𝑡𝑜𝑝−𝐾
𝑀

≈ 0.75. In practice, we choose

𝑀𝑡𝑜𝑝−𝐾
𝑀

= 0.55 as the

default parameter setting.

Analysis: 1) Among the four replacement policies, Ours+RA and Ours+HG often have higher

performance than Ours+Freq and Ours+SS. Specifically, Ours+RA has more advantages in F1 score,

while Ours+HG has more advantages in ARE. Considering that Ours+RA has higher throughput,

we recommend using Ours+RA in practice. 2) However, although Ours+Freq and Ours+SS are

slightly inferior in accuracy, Freq and SS are famous for their formal and comprehensive error

theories and error bounds. Benefiting from their theories, we suggest that Ours+Freq and Ours+SS

should be considered in scenarios where exact error guarantees are required.

6 CONCLUSION
In this paper, we propose the Double-Anonymous sketch, which is the first work that achieves

top-𝐾-fairness of global top-𝐾 . We theoretically prove that the Double-Anonymous sketch achieves

both unbiasedness and double-anonymity, so as to achieve top-𝐾-fairness. We conduct extensive

experiments on three real and one synthetic dataset. Our experimental results show that compared

with the state-of-the-art, our algorithm improves the accuracy 129 times.
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