
Fat-B+Tree: Fast B+tree Indexing with In-Network
Memory

Yikai Zhao∗, Yuanpeng Li∗, Zicang Xu∗, Tong Yang∗, Kaicheng Yang∗, Li Chen†, Xin Yao‡, Gong Zhang‡
∗ Peking University, China † Zhongguancun Laboratory, China ‡ Huawei Theory Lab, China

Abstract—In-memory database in the data center plays an
indispensable role in many fields. B+tree is the most recog-
nized index in in-memory database, but its indexing latency
has become the bottleneck that prevents the database from
achieving higher performance. The existing work reduces latency
by caching B+tree nodes using slow DRAM on computing clients,
or directly caching data using fast SRAM on programmable
switch. However, no existing work can meet all three key
requirements: (1) Efficiency: providing enough fast memory to
accelerate indexing. (2) Compatibility: compatible with multiple
architectures and query types. (3) Adaptability: adapting to
various workloads and database scales. Inspired by structrual
similarity between the network topology of modern data centers
and the B+tree structure, we propose Fat-B+Tree, which embeds
the B+tree into the in-network fast memory provided by the
hierarchical connected programmable switches, thus meeting all
design requirements. We have fully implemented the Fat-B+Tree
prototype, and the experimental results show that compared with
the baseline system, it reduces query latency by up to 76% and
improves throughput by up to 3.93 times. The source codes of
Fat-B+Tree are open-sourced at GitHub.

I. INTRODUCTION

In-memory databases are the infrastructure for a vast num-
ber of fields [1]–[4]. B+tree is the most widely used index in
in-memory database [5]. In-memory databases often improve
the performance by separating computing and memory into
different machines in the data center [6]. The two most
promising architectures are client-server [7], [8] and memory
disaggregation [9]–[16]. In the client-server architecture, mem-
ory servers perform the indexing through the local B+tree, so
the indexing performance of the B+tree directly determines
the throughput. In the memory disaggregation architecture, the
computing clients remotely access the B+tree in the disaggre-
gated memory provided by the memory servers through the
RDMA (Remote Direct Memory Access) [17], [18], so that
the indexing time becomes the main component of the query
latency.

Optimizing the index performance of B+tree is challenging
because of its scattered structure connected by pointers [19].
For local memory, every access from the root to the leaf has
a high probability of causing cache misses, which increases
latency. For disaggregated memory, each access requires one
RDMA read, resulting in a microsecond-level round trip
latency. We believe that an ideal system for optimizing the
B+tree should meet the following requirements: (R1) Effi-
ciency: it can provide large capacity of fast memory (e.g.,
SRAM) to accelerate the data indexing. (R2) Compatibility: it
is compatible with both client-server and memory disaggrega-

⋯ ⋯

FatTree Topology B+Tree

Figure 1: Exploiting the structural similarity between FatTree
topology and B+tree.

tion, and it is compatible with common operations of B+tree.
(R3) Adaptability: it can adapt to the dynamic changes of
workload, and it can adapt to the scale of the database.

The existing systems for optimizing data indexing cannot
meet the requirements simultaneously. We loosely divide them
into two categories. The first category optimizes the structure
of the B+tree for RDMA network, and reduces latency by
caching nodes in the DRAM of hundreds MB in computing
clients [8], [17], [20]–[22]. However, they fail to meet R1
because the SRAM available on the computing client is only
1∼2MB per core. The second category uses the programmable
switch to directly cache the information of the hottest keys
with tens MB of SRAM in the data plane of edge switch
[23]–[26]. However, they fail to meet R2 because they do not
support range query and RDMA network. They also fail to
meet the R3 because they can only cache the information of
a few keys, so they are sensitive to workload changes [23].

Figure 1 shows the FatTree topology and the data structure
of the B+tree: there is a three-layer tree consisting of 13
switches in the FatTree topology with k = 4, and these
switches can provide a total of more than 100 MB of fast
memory (SRAM and TCAM1). Based on this observation, we
propose Fat-B+Tree that embeds part of the B+tree into the
hierarchical connected programmable switches. Fat-B+Tree
meets the requirements at the same time. (R1) It is efficient:
it can leverage hundreds MB or even several GB of fast on-
chip memory in the switches to perform in-network indexing.
Compared with the baseline system, it can reduce query
latency by up to 76% and improve throughput by up to 3.93
times. (R2) It is compatible: it embeds B+tree into the data
plane to support common operations of B+tree, and it can
be deployed in Ethernet and RoCE networks to support both
architectures. (R3) It is adaptive: it completely stores the nodes
in the top layers of the B+tree, which can always reduce the
indexing latency under any workload and any scale.

1Ternary Content Addressable Memory.

❹ establish RDMA
connections

❸ load B+-tree
nodes

❶ fetch B+-tree

❺ register
RDMA status

❻ in-network index

❷ B+-tree reforming
and caching

computing
client

core switch

storage
servers

edge switches

central controller

❶ ❷ ❸⋯ ⋯

B+-tree

memory
region

edge
switches

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

❹

❺
ℎ𝑣𝑣𝑟𝑟

𝑟𝑟𝑟𝑟𝑟𝑟

ℎ𝑣𝑣𝑟𝑟

𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟3

𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟1 𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟2

❻

System Overview

Figure 2: Overview and workflow of Fat-B+Tree.

The programmability of modern switches enables us to
perform the in-network indexing while forwarding the query
packet in the data plane. However, embedding the B+tree and
the corresponding index operation into the data plane still
faces several challenges: (C1) Implement the data structure
and operations of the B+tree through the limited programming
model provided by the data plane. (C2) Bridge the gap
between the Mega-byte level of memory in the data plane
and the Giga-byte B+tree of large-scale databases. And (C3)
Modify the packets of RDMA operators on the data plane that
only supports Ethernet. To address these key challenges, our
proposed system Fat-B+Tree designs several key techniques
and mechanisms according to the following methodologies.
Extending supported key range: using components with
low bit-width to achieve the function of high bit-width. To
support the in-network indexing of 64-bit key, we need to
implement the comparator and range matching table of 64-
bit data in the data plane. Therefore, we design a method
to implement a high bit-width comparator with multiple low
bit-width compactors and matching tables in the data plane
(§III-A), and also propose an algorithm to encode n high bit-
width ranges to O(n) low bit-width sub-tables and table entries
(§III-B). With the expanded programming capabilities, we can
implement B+tree nodes with SRAM or TCAM respectively
in the data plane.
Query acceleration with selective node caching: reforming
the B+tree to make full and reasonable use of memory re-
sources. Although there is a gap of several orders of magnitude
between the SRAM resources of data plane and the memory
volume required by the large-scale B+tree, due to the highly
skewed distribution of query keys, caching only a few B+tree
nodes can cover a large proportion of queries. Therefore, based
on the B+tree structure and the pipeline architecture of the data
plane, we design a layer-by-layer node caching mechanism to
select nodes to be loaded into the data plane (§III-C). On
the other hand, we also design a greedy B+tree reforming
algorithm (§III-B). By using TCAM resources, it can not only
make full use of data plane memory resources, but also reduce
the depth of B+tree to improve performance.
Native RDMA integration: using the protocol independence
of the data plane to support RDMA protocol. Although the
current programmable data plane is designed for Ethernet
rather than Infiniband network, RoCE (RDMA over Converged
Ethernet) mechanism [27], [28] enables RDMA messages to

be transmitted in Ethernet. Benefiting from the protocol inde-
pendence of PISA (Protocol Independent Switch Architecture)
of programmable data plane, we design processing logic of
RDMA packets to enable RDMA packets to carry query keys
and perform in-network indexing (§III-D).
Key contributions: In this paper, we make the following con-
tributions: (1) We propose a novel in-network indexing system
Fat-B+Tree to accelerate database queries under the memory
disaggregation architecture. As far as we know, it is the first
system to embed tree index structure into programmable data
plane. It meets all design requirements. (2) We implement
the prototype system of Fat-B+Tree, which supports both
RDMA network and Ethernet. We also design network-wide
deployment mechanisms to enable Fat-B+Tree to support
hierarchical connected switches, read-write mixed workloads,
and parallel-accelerated range query. (3) We perform a com-
prehensive evaluation of Fat-B+Tree in both RDMA network
and Ethernet scenarios through abundant experiments, and the
experimental results show that Fat-B+Tree is superior to the
baseline system in many aspects. The source codes of Fat-
B+Tree are open-sourced at GitHub [29].

II. DESIGN OVERVIEW

In this section, we use Figure 2 to show the overview and
workflow of Fat-B+Tree, which includes six key steps that
can be divided into three parts:
• The first part of Fat-B+Tree is to select and reform the

nodes of the B+tree to load them into the data plane of
switches. This part consists of step ❶ to ❸, and involves
memory servers, the central controller, and all switches:
❶ The memory server builds the B+tree index structure
based on the stored data, and transmits the information of
the B+tree nodes to the central controller as required. ❷
The central controller reforms the B+tree through the built-
in greedy algorithm, and selects nodes with high access
frequency to construct a layer-by-layer cache. ❸ The central
controller loads the selected nodes into the data plane of
switches layer by layer.

• The second part of Fat-B+Tree is to establish the RDMA
connection between clients and servers, and register the
RDMA status. This part consists of step ❹ and ❺, and
involves the computing client, memory servers, the central
controller, and edge switches: ❹ The computing client
establishes RDMA connections with the memory servers

2

through CM (Communication Manager) protocol, and ob-
tains metadata of the memory regions where the B+tree is
located on the memory servers. ❺ The computing client
transmits the RDMA connection metadata to the controller,
and the controller sends it to the corresponding edge switch.

• The third part of Fat-B+Tree is to provide in-network
indexing for database queries. This part consists of step ❻,
and involves the computing client, switches, and memory
servers: ❻ The computing client constructs the RDMA-
read operator sent to the memory server and embeds the
query key in the packet; The switches on the forwarding
path perform the in-network indexing and update the target
memory address of the RDMA-read operator according to
the query key and the B+tree nodes stored in the data plane;
As a result, the computing client can perform subsequent
remote indexing directly from an internal node of the B+tree
instead of the original root node.

Our proposed Fat-B+Tree supports both RDMA-based
queries (for memory disaggregation architecture) and TCP/IP-
based queries (for client-server architecture). For queries based
on TCP/IP connection, the system only contains the first
and third parts, in which the third part will be modified
according to the application layer protocol. Memory servers
decide whether to perform the indexing from the root node or
an internal node of the B+tree according to the query address
carried by the received query packets.

III. SYSTEM DESIGN IN THE SWITCH

The design of our in-network index system Fat-B+Tree is
mainly composed of the following four components or mech-
anisms: 1) SRAM-based regular B+tree nodes, 2) TCAM-
based fat-root generation and corresponding B+tree reform
mechanism, 3) layer-by-layer node caching mechanism, and
4) data plane RDMA encapsulation mechanism. We describe
the design of these components and mechanisms in detail in
this section.

A. Regular B+tree Nodes

When accessing a K-branch B+tree node supporting 64-bit
keys on the CPU platform, we need to fetch K − 1 internal
pivot keys from memory according to the node address, and
compare the input key and these pivot keys to determine
the address of the next node to be accessed. However, since
the programmable data plane neither supports the comparison
between 64-bit data nor provides the address space as large as
that of the CPU platform, we need to adjust the above steps
to adapt the special programming model. We first introduce
how to use 32-bit arithmetic units and match-action tables to
achieve comparison between higher bit-width data, and then
show how to use tables to fetch internal keys and the next
address in the data plane pipeline.
Design of 64-bit comparator: As shown in Figure 3, given
two 64-bit data key[63 : 0] (input key) and pivot[63 : 0]
(internal key), their comparison consists of two phases. In
the first phase, we use 32-bit arithmetic units to perform

[62: 32]

[62: 32]

[30: 0]

[30: 0]

[63]

[63]

[31]

[31]

hi	([63: 32]) lo	([31: 0])
pivot

key

sub

xor

[63] [31]

64-bit	Comparator
sub[63: 32] xor[31] xor[63] result

= 0 0 ∗ sub[31]

= 0 1 ∗ key[31]

≠ 0 ∗ 0 sub[63]

≠ 0 ∗ 1 key[63]

Figure 3: An example of 64-bit data comparison using 32-bit
arithmetic units and match-action tables.

operations on the high 32 bits and low 32 bits of data
respectively, and get:

sub[63 : 32] = pivot[63 : 32]− key[63 : 32]

xor[63 : 32] = pivot[63 : 32]⊕ key[63 : 32]

sub[31 : 0] = pivot[31 : 0]− key[31 : 0]

xor[31 : 0] = pivot[31 : 0]⊕ key[31 : 0].

In the second phase, a value sub[63 : 32] and a total of 6
bits (key[63], key[31], sub[63], sub[31], xor[63], xor[31]) will
be used to determine whether the input key is larger than the
internal key. Specifically, we use a match-action table as shown
in Figure 3, in which sub[63 : 32] and 2 bits (xor[63], xor[31])
are used as matching keywords, and the other 4 bits (key[63],
key[31], sub[63], sub[31]) are used as possible assignment
results. For example, given key = 0x59A4737582A775AB
and pivot = 0xDDAEE7764589DB15, the match-action table
uses the keywords sub[63 : 32] = 0x840A7401, xor[31] = 1,
xor[63] = 1 to determine that the fourth action needs to be
executed, and then uses key[63] = 0 as the comparison result,
which means that input key is not larger than pivot key. This
method is not only applicable to the comparison between 64-
bit data, but also can be easily extended to the comparison
between data with higher bit-width.
Design of 16-branch regular nodes: In the programmable
data plane with pipeline architecture, our system Fat-B+Tree
uses 6 stages to implement 16-branch regular nodes. Given n
regular nodes and assuming that each node records 16 internal
pivot keys, implementing these nodes requires 16 match-action
tables (get_pivot_i) with n entries, 16 very small ta-
bles (cal_result_i), and a table get_child_address
with 16 × n entries. Specifically, the table get_pivot_i
records the i-th internal pivot key of each node. This table
uses the 64-bit address as the matching keyword, the cor-
responding action fetches the pivot key associated with the
address, and obtains the temporary variables subi and xori.
The table cal_result_i uses subi[63 : 32], xori[31],
and xori[63] as matching keywords, and obtains a 1-bit
comparison result, which is recorded in result[i]. The table
get_child_address records the addresses of 16 × n
child nodes of n regular nodes. This table uses the 64-bit
initial address and the 16-bit comparison result result[15 : 0]
as matching keywords, and the corresponding action fetches
64-bit child node address. The comparison result is 16-bit
data starting with a continuous 1 bit. For example, when
result[15 : 0] = 0b1111110000000000, the action will fetch
the address of the sixth child node.

3

𝑘𝑘2 𝑘𝑘4

𝑘𝑘0 𝑘𝑘1 𝑘𝑘3 𝑘𝑘5 𝑘𝑘6 𝑘𝑘8 𝑘𝑘9 𝑘𝑘10 𝑘𝑘12 𝑘𝑘14 𝑘𝑘15 𝑘𝑘17 𝑘𝑘18

𝑘𝑘11 𝑘𝑘13 𝑘𝑘16

𝑘𝑘7

12 20 22 97 14 85 70

54 266

320 Traditional B+Tree

𝑘𝑘2 𝑘𝑘4

𝑘𝑘0 𝑘𝑘1 𝑘𝑘3 𝑘𝑘5 𝑘𝑘6
12 20 22

54
𝑘𝑘12

14
𝑘𝑘17 𝑘𝑘18

70

𝑘𝑘7 𝑘𝑘8 𝑘𝑘9 𝑘𝑘10 𝑘𝑘11 𝑘𝑘13 𝑘𝑘16 𝑘𝑘14 𝑘𝑘15
768 Adjusted B+Tree with Fat-root Node

key[5: 4] key[3: 2] key[1: 0] result

Range Matching of Arbitrarily Width

Figure 4: i) An example of reforming a traditional B+tree into an adjusted B+tree with a fat-root node, in which the numbers
above the nodes represent the access frequencies. ii) An example of implementing range matching of high bit-width (e.g.,
6-bit) data through multiple low bit-width (e.g., 2-bit) range matching tables.

B. Fat-root Generation and B+tree Reform
Although Fat-B+Tree can deploy many B+tree nodes

within 6 stages, each packet can only access one of these
nodes due to the pipeline processing constraints of the data
plane. Considering that for a B+tree, each index operation
will also access only one node in each layer, an intuitive idea
is to deploy one layer of the B+tree in every 6 stages of the
data planes. However, this idea is not feasible due to the tree
structure of B+tree. The top layers of a B+tree contain only a
few nodes, which cannot make full use of the resources of the
data plane. In contrast, the bottom layers of a B+tree contain
too many nodes, which cannot be fully deployed to the data
plane due to resource constraints. In this section, we propose a
technique called fat-root generation to reform the transitional
B+tree to alleviate the first issue.

As shown in Figure 4(i), the rationale of fat-root generation
technique is to merge multiple nodes in the top layers of the
B+tree into a fat-root node, which makes the entire B+tree
“fat”, that is, increases the number of nodes in the top layers
of the B+tree. Constructing a fat-root node with many internal
pivot keys can not only make full use of the switch resources,
but also reduce the number of access to nodes required by
index operations. For example, if all the internal keys in the
top 3 layers of the B+tree are added to the fat-root node,
each index operation can reduce the access to the nodes twice.
The reason why this technique is not used in the B+tree of
the CPU platform is that containing too many internal keys
will significantly increase the number of comparisons. For
similar reasons, fat-root nodes cannot be implemented with
SRAM in the data plane as regular B+tree nodes, especially
when a stage supports up to 16 tables. Fortunately, TCAM
(ternary content addressable memory) resources and TCAM-
based range matching tables in the data plane give us the
possibility to find the correct one from a large number of
ranges at line-rate. We first analyze which nodes should be
selected to merge into fat-root node, and then introduce how
to implement range matching of high bit-width (e.g., 64-bit)
data through low bit-width (e.g., 16-bit) range matching tables

provided by the programmable data plane.

The reason why we need to carefully select which nodes to
merge into the fat-root node rather than randomly is that, from
the perspective of reducing the number of access to nodes, the
nodes are not equal. For example, suppose that the root node
has only two child nodes, and 80% of the index operations
pass through the left child node, while the remaining 20% of
the index operations pass through the right child node. This
skewed distribution is common due to the Zipf’s law [30]. If
we can only merge one node into the fat root node, merging
the left child node can benefit more index operations, thus
improving the overall index performance.

Based on this observation, we propose a greedy-based node
selection algorithm. Assuming that we know the frequency of
each node being accessed, we maintain a priority queue from
the node with most access to the node with the least access. We
start by adding the original root node to the queue. Every time
a node is taken from the queue, we merge all the internal keys
of this node into the fat-root node, and add all the child nodes
of this node to the queue. This routine runs until the queue
is empty or the size of the fat-root node reaches the limit
K. If each node is full, this algorithm can find the optimal
node set, that is, the set that minimizes the total number of
access of nodes. An implementation example of the algorithm
is shown in Figure 4(i). The algorithm finally selects the four
nodes {k7}, {k11, k13, k16}, {k8, k9, k10}, and {k14, k15} with
the highest access frequency, and merges them into a fat-
root node {k7, k8, k9, k10, k11, k13, k14, k15, k16} containing 9
internal keys.

Implementation of fat-root node: Given a fat-root node
containing n − 1 internal pivot keys and n child nodes, the
index operation on the fat-root node is to find which of the
n ranges the query key falls within. Since the Fat-B+Tree
supports 64-bit keys, the index operation depends on 64-bit
range matching tables, while the programmable data plane
generally only supports range matching table with a lower
bit-width, such as no more than 20 bits. To address this issue,

4

we propose Algorithm 12, a method to encode high bit-wide
range into multiple low bit-wide range matching tables.

Algorithm 1: Routines for constructing range match-
ing tables and generating table entries.

1 Func Construct_1(Ranges[1 . . . n]):
2 r ← 1;
3 next tab[0 . . . 216 − 1]← [0, · · · , 0];
4 next← n+ 1;
5 for i = 0→ 216 − 1 do
6 range← [i≪ 48, (i+ 1)≪ 48);
7 while range ∩Ranges[r] = ∅ do
8 r ← r + 1;
9 if range ⊆ Ranges[r] then

10 next tab[i]← r;
11 else
12 next tab[i]← next;
13 next←

Construct_2(Ranges, next, i≪ 48);
14 Generate_1(0, next tab);
15 return next;
16 Func Generate_1(tab, next tab[0 . . . 216 − 1]):
17 range← ∅;
18 next← next tab[0];
19 for i = 0→ 216 − 1 do
20 if next tab[i] = next then
21 range← range ∪ {i};
22 else
23 Table-add-entry(tab, range, next);
24 range← {i};
25 next← next tab[i];
26 Table-add-entry(tab, range, next);

Taking 64-bit range and 16-bit range matching tables as an
example, and assuming that the 64-bit key space is divided
into n ranges R1, · · · , Rn, the algorithm first uses function
Construct_1 to construct a 16-bit range matching table
to match the high 16 bits data key[63 : 48] of query key
key. The algorithm first traverses 216 ranges r1, · · · , r216 with
a length of 248, where ri = [(i − 1) × 248, i × 248 − 1].
If the range ri is completely covered by the range Rj , the
algorithm sets the matching result of the 16-bit range [i, i] to
Rj ; If the range ri intersects multiple ranges Rj1 , · · · , Rjm ,
the algorithm sets the matching result of the 16-bit range
[i, i] as another table Ti in the next stage. After getting the
matching results of each 16-bit range, algorithm uses function
Generate_1 to merge the adjacent ranges with the same
matching results, and obtain O(n) matching table entries. The
algorithm uses functions Construct_2, Construct_3,
and Construct_4 to recursively construct the tables in the
next three stages, and uses them to match the remaining three
parts key[47 : 32], key[31, 16], and key[15, 0] of the query key.
These three functions are similar to Construct_1. When
deploying these matching tables in the data plane, multiple
tables in a stage can be implemented as a large table, and
each entry of this table contains an index of the original table
and a 16-bit range.

2Due to space limitations, we only show the pesudo-code for functions
Construct_1 and Generate_1, the implementation of the other functions
is similar.

Algorithm 1 only constructs n 16-bit matching tables at
most in each stage, and the total number of entries in all
matching tables in each stage does not exceed 2 × n. The
computational complexity of Algorithm 1 is O(216×n+n2).
The complexity of algorithm can be optimized to O(216+n),
but the current version is efficient enough to complete the
construction of tables in one second. Figure 4(ii) shows an
example of implementing range matching of 6-bit data through
eight 2-bit range matching tables. In this example, the 6-bit key
space is divided into five ranges R1 = [0, 10], R2 = [11, 14],
R3 = [15, 37], R4 = [38, 56], R5 = [57, 63]. Algorithm 1
constructs 2-bit range matching tables in three stages. The first
stage consists of 1 table (T0) containing 4 table entries in total,
the second stage consists of 3 tables (T5, T8, T10) containing
9 table entries in total, and the third stage consists of 4 tables
(T6, T7, T9, T11) containing 8 table entries in total.

C. Layer-by-layer Node Caching
As mentioned in Section III-A, deploying a B+tree in the

data plane faces two practical issues. The fat-root generation
technique addresses the first issue that there are too few nodes
in the top layers of the B+tree to make full use of the resources
in the data plane. In this section, we propose the layer-by-layer
node caching technique to address the second issue that we
cannot load all the nodes in the bottom layers of the B+tree
into the data plane.

Although we assume that Fat-B+Tree can obtain the access
frequency of each node in the B+tree, the tree structure of
the B+tree prevents us from directly caching the nodes with
the highest access frequency in each layer to the data plane,
because if a node wants to be accessed, all its ancestors must
be cached to the data plane. Based on this limitation, we
propose a layer-by-layer node caching technique. Suppose we
can cache up to K nodes in each layer to the programmable
data plane. After reforming the B+tree through the fat-root
generation technique, we first add the K nodes with the highest
access frequency among the children of the fat-root node to the
first layer cache. Later, we select K nodes with the highest
access frequency from the children of all nodes in the first
layer cache, and add them to the second layer cache, although
the access frequency of these nodes may be lower than that
of some other nodes in the same layer. We construct each
subsequent layer of cache according to the same routine.

D. Query Encapsulation for RoCE
After deploying the B+tree into the data plane, the remain-

ing issue is how to fetch the query key from the packet and
fill in the query address. If the client and server communicate
through TCP/IP, we can flexibly customize the application
layer protocol. However, the current communities are keen
to introduce RDMA into the database to improve the per-
formance. For the traditional B+tree, the client first uses the
RDMA-read to fetch the root node of the B+tree, then obtains
the address of the child node locally through comparison, and
then gradually fetches the nodes through the RDMA-read, and
finally fetches the data. The introduction of RDMA brings

5

challenges to Fat-B+Tree, because the data packet of RDMA-
read has no application layer load, and the fields that the
sender can modify are only three files in the RDMA Extended
Transport Header: 64-bit va, 32-bit rkey, and 32-bit length.

We design a query information encapsulation mechanism in
the data plane to solve this challenge. We divide the switches
participating in Fat-B+Tree into three types: the first-hop
switch, the intermediate switch, and the last-hop switch. For
each index or query operation, the client construct a special
RDMA-read by setting the 64-bit va filed as the query key, the
32-bit rkey filed as 0, and the length field as the size of the
B+tree node. The first-hop switch identifies special operators
according to whether rkey is 0, attaches a temporary header to
record the query key originally stored in the va, performs in-
network index to obtain the query address, and fills the address
in the va field. Intermediate switches all perform the index
according to the query key in the temporary header and the
va filed, and update the va with the result. The last-hop switch
needs to remove the temporary header. The server takes out
the B+tree node pointed to by the query address filled by the
switch, and sends the data back to the client. After receiving
an internal node of the B+tree obtained by the special RDMA-
read, the client can use the conventional logic to obtain the
subsequent child nodes trough the normal RDMA-read until
the final data.

IV. IMPLEMENTATION

A. Network-wide Deployment
Deployment on a single switch: As mentioned in Section
III-B and III-A, we design two types of B+tree nodes, namely
the fat-root node based on TCAM, and the 16-branch regular
node based on SRAM. We fully implement the fat-root node
supporting up to 1024 child nodes and the node set support-
ing up to 4096 16-branch regular nodes in the commercial
programmable switch. The implementation of fat-root node
and regular node set only requires 6 consecutive stages, while
the commercial programmable data plane provides at least 12
stages. Therefore, we can implement a fat-root node and a
regular node set in a switch, or two regular node sets in a
switch, where each regular node set contains some cached
nodes in the same layer of the B+tree.
Deployment on multiple switches: Take the data center
network with the FatTree topology with k pods as an example.
To deploy our Fat-B+Tree in this network, we first arbitrarily
select a core switch Sc. Switch Sc is connected with k
aggregation switches Sa1

, · · · , Sak
in the k pods. Switch Sai

is connected with k
2 edge switches Sei,1 , · · · , Sei,k/2

in the
pod, and these edge switches connect the servers in their re-
spective racks. For the distributed database, data is sequentially
stored in multiple memory servers, and each memory server
maintains its own B+tree. To build a unified B+tree in the
data plane, we only need to build a super-root node with the
root node of each B+tree as the child node, and add this
super-root node as the initial node to the queue to generate
a fat-root node. Core switch: We deploy the fat-root node
of the unified B+tree in the core switch Sc. In addition to

giving the address of the child node corresponding to each
range, the fat-root node also needs to give the memory server
ID corresponding to the data in each range, and the memory
server ID is carried in the temporary header mentioned in
Section III-D. Switch Sc forwards the packet to one of the k
aggregation switches according to the server ID. Aggregation
switches: We deploy two regular node sets in the aggregation
switch Sai . Switch Sai forwards the packet to one of the k

2
edge switches according to the server ID. Edge switches: We
deploy two regular node sets in the edge switch Sei,j . Switch
Sei,j forwards the packet to one of the k

2 servers according to
the server ID.

B. Read-write Mixed Workload
We currently adopt a lazy B+tree structure update mech-

anism to handle the read-write mixed workload. Since the
insertion/deletion operations change the B+tree structure from
the leaf node and affect the parent node layer by layer, once
we need to modify an internal node with a memory address of
r and its parent node is loaded into the data plane, we regard
it as a temporary root node rather than an internal node. The
subtree with this node continues to take this node as the root,
or a newly generated node whose memory address is still r as
the root, without affecting the loaded parent node.

C. Parallel Accelerated Range Query
When performing a range query for the range [l, r], the tra-

ditional B+tree needs to first query the minimum data falling
within the range, and then continuously traverse the data
through the linked list between leaf nodes. A simple approach
to accelerate range query is to divide the range [l, r] into n con-
secutive sub-ranges [l1 = l, r1], · · · , [ln, rn = r], and perform
sub-range queries in parallel. However, for traditional B+tree
index, this approach will bring significant index overhead.
For example, if the range contains 100 valid keys, assuming
that each indexing requires 7 memory access, dividing the
original range into 10 sub-ranges will bring 59%(170/107)
additional overhead. With Fat-B+Tree, assuming that each
indexing can perform 5 memory access in the data plane, and
requires only 2 memory access in the servers, the additional
overhead can be reduced to 18%(120/102). Therefore, using
parallel-accelerated range query in Fat-B+Tree can signifi-
cantly reduce query latency at the cost of only sightly affecting
throughput.

V. EXPERIMENT

A. Experimental Setup
Benchmark: We evaluate our system Fat-B+Tree through the
open source YCSB benchmark [31], [32]. We use the workload
provided by YCSB as the computing client, use the B+tree
written by about 1000 lines of C++ code as the memory
server, and use the communication protocol written by about
1100 lines of DPDK code [33]. We deploy the programmable
data plane program according to the mechanism proposed in
Section IV-A, which contains about 1300 lines of P4 code and
1000 lines of control plane code.

6

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10
Scale (×106)

0

25

50

75

100

125

150

Av
er

ag
e

la
te

nc
y

(u
s)

ours baseline

(a) Average latency

1 2 3 4 5 6 7 8 9 10
Scale (×106)

0

25

50

75

100

125

150

99
%

 la
te

nc
y

(u
s)

ours baseline

(b) 99% latency

1 2 3 4 5 6 7 8 9 10
Scale (×106)

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 (K

TP
S)

ours baseline

(c) Throughput

1 2 3 4 5 6 7 8 9 10
Scale (×106)

0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

1 2 3 4

(d) # round trips

Figure 5: The impact of database scale on performance.

0.0 0.2 0.4 0.6 0.8 1.0
Workload variation

0

25

50

75

100

125

150

Av
er

ag
e

la
te

nc
y

(u
s)

ours baseline

(a) Average latency

0.0 0.2 0.4 0.6 0.8 1.0
Workload variation

0

25

50

75

100

125

150

99
%

 la
te

nc
y

(u
s)

ours baseline

(b) 99% latency

0.0 0.2 0.4 0.6 0.8 1.0
Workload variation

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 (K

TP
S)

ours baseline

(c) Throughput

0.0 0.2 0.4 0.6 0.8 1.0
Workload variation

0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

1 2 3

(d) # round trips

Figure 6: The impact of query workload variation on performance.

0.90 0.95 0.990

10

20

30

Th
ro

ug
hp

ut
 (K

TP
S)

ours baseline

(a) Throughput

0 50 100 150 200
Latency (us)

0.0

0.1

0.2

0.3

PD
F

ours baseline

(b) Latency (α = 0.90)

0 50 100 150 200
Latency (us)

0.0

0.1

0.2

0.3

PD
F

ours baseline

(c) Latency (α = 0.95)

0 50 100 150 200
Latency (us)

0.0

0.1

0.2

0.3

PD
F

ours baseline

(d) Latency (α = 0.99)

Figure 7: The impact of query workload distribution on performance.

Hardware platform: We evaluate our system Fat-B+Tree
in RDMA network and Ethernet respectively. For RDMA
network, we emulate memory disaggregation architecture. We
use a server to emulate the computing client, and another
server to emulate the memory server, each of which is con-
figured with a 4.2GHz CPU, 128GB DRAM, and a Mellanox
ConnectX-5 NIC. These servers are connected through two
Tofino programmable switches. For Ethernet, we emulate
client-server architecture. We use one server to emulate the
computing client, and four servers to emulate memory servers,
each of which is configured with a 2.1GHz CPU, 256GB
DRAM, and a Mellanox ConnectX-3 NIC. These servers are
located in a data center network with K = 4 FatTree topology.
Four memory servers are in one pod, while the computing
client is in another pod. All devices are connected through
40Gbps cables.
Baseline systems: For the RDMA network, in the baseline
system, the computing client fetches the root node of the
B+tree remotely through the RDMA-read operator, and con-
tinuous to fetch the subsequent nodes until the data; For
the Ethernet, in the baseline system, the memory servers are
responsible for performing the indexing starting from the root
of the B+tree.

B. Experiments on RDMA Network
Default setting: In this section, we set the database scale to
2 × 106 keys, set the length of each value to 1000 bytes, set

a single thread to emulate the computing client, and set the
workload to be read-only (YCSB workload C), subject to the
zipfian distribution of α = 0.99. We load a fat-root node with
a maximum of 600 ranges and three subsequent layers with a
maximum of 3600 nodes into the data plane of two switches.

Performance v.s. database scale (Figure 5): We vary the
database scale from 1 × 106 to 1 × 107, and evaluate the
performance of our Fat-B+Tree and the baseline. The average
query latency of our Fat-B+Tree varies from 27.5us to 46.7us,
while that of the baseline varies from 112.6us to 129.0us. The
99% query latency of our Fat-B+Tree varies from 51.1us to
71.0us, while that of the baseline varies from 122.5 to 142.4.
The throughput of our Fat-B+Tree varies from 34.2KTPS to
20.5KTPS, while that of the baseline varies from 8.7KTPS to
7.6KTPS. In summary, the latency of our Fat-B+Tree can be
reduced by up to 76%, and the throughput of our Fat-B+Tree
can be improved by up to 2.93 times. As shown in Figure
5(d), for Fat-B+Tree, we observe two critical points 3× 106

and 7 × 106. When the scale is 3 × 106, the total depth of
the B+tree is increased by one layer, so no query can fetch
results after a single round trip. When the scale is 5×106, the
subsequent layer of fat-root cannot be fully loaded, resulting
in some queries that require four round trips. These two points
can correspond to the change of the curve in Figure 5(a)-5(c)

Performance v.s. workload variation (Figure 6): We make a
difference between the query key distribution used to generate

7

300 1200 2100 3000 3900
Node

0

25

50

75

100

125

150
Av

er
ag

e
la

te
nc

y
(u

s)

ours baseline

(a) Average latency

300 1200 2100 3000 3900
Node

0

25

50

75

100

125

150

99
%

 la
te

nc
y

(u
s)

ours baseline

(b) 99% latency

300 1200 2100 3000 3900
Node

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 (K

TP
S)

ours baseline

(c) Throughput

300 1200 2100 3000 3900
Node

0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

1 2 3 4

(d) # round trips

Figure 8: The impact of the number of loaded B+tree nodes on performance.

0 1 2 3
Layer

0

25

50

75

100

125

150

Av
er

ag
e

la
te

nc
y

(u
s)

ours baseline

(a) Average latency

0 1 2 3
Layer

0

25

50

75

100

125

150

99
%

 la
te

nc
y

(u
s)

ours baseline

(b) 99% latency

0 1 2 3 baseline
Layer

0

10

20

30

Th
ro

ug
hp

ut
 (K

TP
S)

(c) Throughput

0 1 2 3 baseline
Layer

0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

1
2

3
4

7

(d) # round trips

Figure 9: The impact of the number of loaded B+tree layers on performance.

the fat-root and the cached nodes and that used to perform
the performance experiment, and evaluate the impact of the
degree of variation on the performance. The average query
latency of our Fat-B+Tree varies from 32.9us to 44.9us, while
that of the baseline is around 113us. The 99% query latency
of our Fat-B+Tree varies from 52.7us to 55.5us, while that
of the baseline is around 123us. The throughput of our Fat-
B+Tree varies from 28.8KTPS to 21.3KTPS, while that of the
baseline is around 8.7KTPS. In summary, the latency of our
Fat-B+Tree can be reduced by up to 71%, and the throughput
of our Fat-B+Tree can be improved by up to 2.31 times.
As expected, all performance indicators change linearly, and
even if the query key distribution of workload is completely
changed, Fat-B+Tree can still play a significant acceleration
effect, but no query can be completed after a single round trip.
Performance v.s. workload distribution (Figure 7): We
evaluate the performance of our Fat-B+Tree and the base-
line with zipfian distribution [30] workloads with parameters
α = 0.9, α = 0.95, and α = 0.99. The throughput of our
Fat-B+Tree varies from 25.8KTPS to 28.8KTPS, while that
of the baseline is around 8.7KTPS. We also show the query
latency distribution under different workload distributions. As
shown in Figure 7(b)-7(d), Fat-B+Tree performs better under
a more skewed workload, which allows more queries to be
completed after fewer round trips.
Performance v.s. the number of loaded nodes (Figure 8):
We set the fat-root to contain a maximum of 600 nodes, and
vary the maximum number of nodes that the subsequent layers
can contain from 300 to 3900, and evaluate the performance of
our Fat-B+Tree and the baseline. The average query latency
of our Fat-B+Tree varies from 45.6us to 32.7us, while that
of the baseline is 113.2us. The 99% query latency of our
Fat-B+Tree varies from 72.5us to 52.7us, while that of the
baseline is 123.2us. The throughput of our Fat-B+Tree varies
from 21.1KTPS to 28.9KTPS, while that of the baseline is
8.7KTPS. In summary, the latency of our Fat-B+Tree can be

reduced by up to 71%, and the throughput of our Fat-B+Tree
can be improved by up to 2.32 times.
Performance v.s. the number of loaded layers (Figure 9):
We loaded the fat-root fixedly, and vary the number of loaded
subsequent layers from 0 to 3, and evaluate the performance of
our Fat-B+Tree and the baseline. The average query latency
of our Fat-B+Tree varies from 74.1us to 32.8us, while that
of the baseline is 113.2us. The 99% query latency of our
Fat-B+Tree varies from 88.4us to 52.6us, while that of the
baseline is 123.2us. The throughput of our Fat-B+Tree varies
from 13.1KTPS to 28.9KTPS, while that of the baseline is
8.7KTPS. In summary, the latency of our Fat-B+Tree can be
reduced by up to 71%, and the throughput of our Fat-B+Tree
can be improved by up to 2.33 times.

C. Experiments on Large-scale Ethernet
Default setting: In this section, we set the database scale
to 1 × 108 keys, set the length of each value to 64 bytes,
set 16 threads to emulate the 16 computing clients, and set
the workload to 90% read and 10% write (modified YCSB
workload B), subject to the zipfian distribution of α = 0.99.
We load a fat-root node with a maximum of 600 ranges and
four subsequent layers with a maximum of 3600 nodes into
the data planes (§IV-A).
Throughput v.s. database scale (Figure 10(a)): We vary the
database scale from 1×107 to 1×108, and evaluate the perfor-
mance of our Fat-B+Tree and the baseline. The throughput of
our Fat-B+Tree has the maximum value of 679.8KTPS and
the minimum value of 566.0KTPS, while those of the baseline
is 557.1KTPS and 437.2KTPS. In summary, the throughput
of our Fat-B+Tree can be improved by up to 1.35 times. A
critical point occurs when the scale is 2×107. This is because
the resources of the switches are not fully used when the scale
is 107, and the depth of the B+tree is increased by one layer
when the scale is 2×107, which makes full use of the resources
of the switches to achieve higher performance.

8

1 2 3 4 5 6 7 8 9 10
Scale (×107)

400

450

500

550

600

650

700

Th
ro

ug
hp

ut
 (K

TP
S)

ours baseline

(a) Throughput v.s. scale

0 2 4 6 8 10 12 14 16
Threads

0

100

200

300

400

500

600

Th
ro

ug
hp

ut
 (K

TP
S)

ours baseline

(b) Throughput v.s. # threads

0.5 0.6 0.7 0.8 0.9 1
Proportion of read operations

350

400

450

500

550

600

650

Th
ro

ug
hp

ut
 (K

TP
S)

ours baseline

(c) Throughput v.s. read/write ratio

0.90 0.93 0.96 0.99400

450

500

550

600

Th
ro

ug
hp

ut
 (K

TP
S)

ours baseline

(d) Throughput v.s. workload

Figure 10: The adaptability and scalability of the system in the Ethernet scenario.

Throughput v.s. the number of clients (Figure 10(b)): We
vary the number of computing clients from 1 to 16, and
evaluate the performance of our Fat-B+Tree and the baseline.
The throughput of our Fat-B+Tree changes from 52.0KTPS to
583.1KTPS, while that of the baseline changes from 47.7KTPS
to 442.8KTPS. In summary, the throughput of our Fat-B+Tree
can be improved by up to 1.32 times. It can be observed that
the throughput growth rate of the baseline begin to slow down
earlier than that of the Fat-B+Tree.
Throughput v.s. read/write ratio (Figure 10(c)): We vary
the read/write ratio from 0.5 : 0.5 to 1 : 0, and evaluate
the performance of our Fat-B+Tree and the baseline. The
throughput of our Fat-B+Tree changes from 613.2KTPS
to 413.7KTPS, while that of the baseline changes from
451.9KTPS to 363.0KTPS. In summary, the throughput of our
Fat-B+Tree can be improved by up to 1.35 times.
Throughput v.s. workload distribution (Figure 10(d)): We
vary the workload distribution from α = 0.9 to α = 0.99,
and evaluate the performance of our Fat-B+Tree and the
baseline. The throughput of our Fat-B+Tree changes from
521.0KTPS to 583.1KTPS, while that of the baseline changes
from 417.7KTPS to 442.8KTPS. In summary, the throughput
of our Fat-B+Tree can be improved by up to 1.32 times.
Unlike the baseline based on RDMA network, the baseline
based on Ethernet can also benefit from a more skewed
workload due to the existence of system cache.

VI. RELATED WORK

Distributed tree index: Typical solutions include Cell [8],
Sherman [20], and more [17], [22]. Cell [8] distributes a global
B-tree of meganodes across machines for server-side searches,
and organizes keys as a local B-tree of RDMA-friendly small
nodes for client-side searches within each meganode. Sherman
[20] proposes a write-optimized B+-tree on disaggregated
memory by combining RDMA hardware features and RDMA-
friendly software techniques. To reduce remote access in the
tree traversal, it caches and maintains the highest two level
of nodes, and the nodes above the leaf nodes. The latency of
Sherman is poor in the worst case: once the cache misses, it
requires to traverse the B+-tree from the high level.
In-network caching: SwitchKV [26] route queries to the right
cache node to move the in-memory cache out of the data
path to achieve high performance. NetCache [23] deploys a
key-value cache on programmable data plane to cache hottest
items. On the basis of NetCache, NetChain [24] builds a

strongly-consistent, fault-tolerant key-value store in the switch
data plane that provides scale-free sub-RTT coordination. Dist-
Cache [25] is a distributed caching mechanism that provides
provable load balancing for large-scale storage systems. KV-
Direct [34] chooses to offload the key-value operations to
the programmable NIC with FPGA. In summary, none of the
above efforts propose to cache the tree structure in-network.
RDMA on programmable switches: TEA [35] implements
RDMA in the data plane to enable the programmable switches
to access external DRAM without involving CPUs. SwitchML
[36] implements a subset of RDMA in the switch, and uses
RDMA to allow data to move directly between the switch and
GPUs. Ribosome [37] use a programmable switch to delegate
the packet payloads on RDMA servers by using RDMA write
message, and only forward the headers to NF servers. Some
works offload RDMA to other customized devices etc. [38]–
[44].

VII. CONCLUSION

In this paper, we propose Fat-B+Tree, a system that
embeds part of the B+tree into the hierarchical connected
programmable switches in the data center network. To extend
the ability of programmable data plane, we design SRAM-
based regular node and TCAM-based fat-root that support
64-bit keys, we design a fat-root generation algorithm and
a layer-by-layer node caching algorithm, we also design an
in-network query information encapsulation mechanism for
RDMA network. Fat-B+Tree simultaneously meets all three
design requirements: (efficiency) it can provide a large amount
of fast on-chip memory, thus significantly reducing the index-
ing latency of B+tree, (compatibility) it can support common
operations of B+tree and both client-server and memory
disaggregation architectures, and (adaptability) it can always
reduce the indexing latency under any workload and any scale.
We have fully implemented the Fat-B+Tree prototype, and
the experimental results show that compared with the baseline
system, it reduces query latency by up to 76% and improves
throughput by up to 3.93 times. The source codes of Fat-
B+Tree are open-sourced at GitHub [29].

ACKNOWLEDGMENT

Tong Yang (yangtongemail@gmail.com) is the correspond-
ing author. This work is supported by National Key R&D
Program of China (No. 2022YFB2901504), and National Nat-
ural Science Foundation of China (NSFC) (No. U20A20179,
62372009, 623B2005).

9

REFERENCES

[1] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in USENIX
NSDI 12, pp. 15–28, 2012.

[2] T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro, Q. Huang, J. Meza,
and K. Veeraraghavan, “Gorilla: A fast, scalable, in-memory time
series database,” Proceedings of the VLDB Endowment, vol. 8, no. 12,
pp. 1816–1827, 2015.

[3] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, et al., “Scaling memcache
at facebook,” in USENIX NSDI 13, pp. 385–398, 2013.

[4] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using rdma efficiently
for key-value services,” in Proceedings of the 2014 ACM Conference on
SIGCOMM, pp. 295–306, 2014.

[5] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast multicore
key-value storage,” in Proceedings of the 7th ACM european conference
on Computer Systems, pp. 183–196, 2012.

[6] Q. Zhang, Y. Cai, X. Chen, S. Angel, A. Chen, V. Liu, and B. T.
Loo, “Understanding the effect of data center resource disaggregation
on production dbmss,” Proceedings of the VLDB Endowment, vol. 13,
no. 9, 2020.

[7] T. Lahiri, M.-A. Neimat, and S. Folkman, “Oracle timesten: An in-
memory database for enterprise applications.,” IEEE Data Eng. Bull.,
vol. 36, no. 2, pp. 6–13, 2013.

[8] C. Mitchell, K. Montgomery, L. Nelson, S. Sen, and J. Li, “Balancing
{CPU} and network in the cell distributed {B-Tree} store,” in USENIX
ATC 16, pp. 451–464, 2016.

[9] I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. A. Maruf, O. Mutlu,
and A. Kolli, “Rethinking software runtimes for disaggregated memory,”
in Proceedings of the 26th ACM ASPLOS Conference, pp. 79–92, 2021.

[10] Z. Guo, Y. Shan, X. Luo, Y. Huang, and Y. Zhang, “Clio: A hardware-
software co-designed disaggregated memory system,” in Proceedings of
the 27th ACM ASPLOS Conference, pp. 417–433, 2022.

[11] S.-s. Lee, Y. Yu, Y. Tang, A. Khandelwal, L. Zhong, and A. Bhattachar-
jee, “Mind: In-network memory management for disaggregated data
centers,” in Proceedings of the ACM SIGOPS 28th SOSP Conference,
pp. 488–504, 2021.

[12] C. Pinto, D. Syrivelis, M. Gazzetti, P. Koutsovasilis, A. Reale, K. Ka-
trinis, and H. P. Hofstee, “Thymesisflow: A software-defined, hw/sw
co-designed interconnect stack for rack-scale memory disaggregation,”
in 2020 53rd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pp. 868–880, IEEE, 2020.

[13] C. Wang, H. Ma, S. Liu, Y. Li, Z. Ruan, K. Nguyen, M. D. Bond,
R. Netravali, M. Kim, and G. H. Xu, “Semeru: A memory-disaggregated
managed runtime,” in Proceedings of the 14th USENIX Conference on
Operating Systems Design and Implementation, pp. 261–280, 2020.

[14] M. Zhang, Y. Hua, P. Zuo, and L. Liu, “{FORD}: Fast one-sided
{RDMA-based} distributed transactions for disaggregated persistent
memory,” in USENIX FAST 22, pp. 51–68, 2022.

[15] Q. Zhang, Y. Cai, X. Chen, S. Angel, A. Chen, V. Liu, and B. T.
Loo, “Understanding the effect of data center resource disaggregation
on production dbmss,” Proceedings of the VLDB Endowment, vol. 13,
no. 9, 2020.

[16] M. Vuppalapati, J. Miron, R. Agarwal, D. Truong, A. Motivala, and
T. Cruanes, “Building an elastic query engine on disaggregated storage.,”
in USENIX NSDI, vol. 20, pp. 449–462, 2020.

[17] T. Ziegler, S. Tumkur Vani, C. Binnig, R. Fonseca, and T. Kraska,
“Designing distributed tree-based index structures for fast rdma-capable
networks,” in Proceedings of the 2019 International Conference on
Management of Data, pp. 741–758, 2019.

[18] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn,
“Rdma over commodity ethernet at scale,” in Proceedings of the 2016
ACM SIGCOMM Conference, pp. 202–215, 2016.

[19] J. Backus, “Can programming be liberated from the von neumann style?
a functional style and its algebra of programs,” Communications of the
ACM, vol. 21, no. 8, pp. 613–641, 1978.

[20] Q. Wang, Y. Lu, and J. Shu, “Sherman: A write-optimized distributed
b+ tree index on disaggregated memory,” in Proceedings of the 2022
International Conference on Management of Data, pp. 1033–1048, 2022.

[21] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson, “{FaRM}:
Fast remote memory,” in USENIX NSDI 14, pp. 401–414, 2014.

[22] A. Shamis, M. Renzelmann, S. Novakovic, G. Chatzopoulos, A. Drago-
jević, D. Narayanan, and M. Castro, “Fast general distributed transac-
tions with opacity,” in Proceedings of the 2019 International Conference
on Management of Data, pp. 433–448, 2019.

[23] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica,
“Netcache: Balancing key-value stores with fast in-network caching,” in
Proceedings of the 26th SOSP Conference, pp. 121–136, 2017.

[24] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and I. Stoica,
“{NetChain}:{Scale-Free}{Sub-RTT} coordination,” in USENIX NSDI
18, pp. 35–49, 2018.

[25] Z. Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman, X. Jin, and
I. Stoica, “{DistCache}: Provable load balancing for {Large-Scale}
storage systems with distributed caching,” in USENIX FAST 19, pp. 143–
157, 2019.

[26] X. Li, R. Sethi, M. Kaminsky, D. G. Andersen, and M. J. Freedman,
“Be fast, cheap and in control with {SwitchKV},” in USENIX NSDI 16,
pp. 31–44, 2016.

[27] I. T. Association et al., “Supplement to infiniband architecture specifi-
cation volume 1 release 1.2.1 annex a16: Rdma over converged ethernet
(roce),” 2010.

[28] I. T. Association et al., “Supplement to infiniband architecture specifi-
cation volume 1 release 1.2.1 annex a17: Rocev2,” 2014.

[29] “All related codes of our Fat-B+Tree.” https://github.com/Fat-BTree/
Fat-BTree.

[30] D. M. Powers, “Applications and explanations of zipf’s law,” in Proceed-
ings of the joint conferences on new methods in language processing
and computational natural language learning, Association for Compu-
tational Linguistics, 1998.

[31] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM symposium on Cloud computing, pp. 143–154, 2010.

[32] “Yahoo! cloud serving benchmark in c++, a c++ version of ycsb..” https:
//github.com/basicthinker/YCSB-C.

[33] “Data plane development kit..” http://doc.dpdk.org/guides-18.02/.
[34] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam, E. Chen, and

L. Zhang, “Kv-direct: High-performance in-memory key-value store
with programmable nic,” in Proceedings of the 26th SOSP Conference,
pp. 137–152, 2017.

[35] D. Kim, Z. Liu, Y. Zhu, C. Kim, J. Lee, V. Sekar, and S. Seshan, “Tea:
Enabling state-intensive network functions on programmable switches,”
in Proceedings of the ACM SIGCOMM 2020 Conference, pp. 90–106,
2020.

[36] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim, A. Krishna-
murthy, M. Moshref, D. R. Ports, and P. Richtárik, “Scaling distributed
machine learning with in-network aggregation,” in USENIX NSDI 21,
pp. 785–808, 2021.

[37] M. Scazzariello, T. Caiazzi, H. Ghasemirahni, T. Barbette, D. Kostic,
and M. Chiesa, “A high-speed stateful packet processing approach for
tbps programmable switches,” in USENIX NSDI 23, 2023.

[38] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter, and K. Gupta,
“Offloading distributed applications onto smartnics using ipipe,” in Pro-
ceedings of the ACM Special Interest Group on Data Communication,
pp. 318–333, 2019.

[39] J. Kim, I. Jang, W. Reda, J. Im, M. Canini, D. Kostić, Y. Kwon, S. Peter,
and E. Witchel, “Linefs: Efficient smartnic offload of a distributed file
system with pipeline parallelism,” in Proceedings of the ACM SIGOPS
28th SOSP Conference, pp. 756–771, 2021.

[40] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. An-
drewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung, et al., “Azure
accelerated networking: Smartnics in the public cloud,” in USENIX NSDI
18, pp. 51–66, 2018.

[41] M. Burke, S. Dharanipragada, S. Joyner, A. Szekeres, J. Nelson,
I. Zhang, and D. R. Ports, “Prism: Rethinking the rdma interface for
distributed systems,” in Proceedings of the ACM SIGOPS 28th SOSP
Conference, pp. 228–242, 2021.

[42] H. N. Schuh, W. Liang, M. Liu, J. Nelson, and A. Krishnamurthy,
“Xenic: Smartnic-accelerated distributed transactions,” in Proceedings
of the ACM SIGOPS 28th SOSP Conference, pp. 740–755, 2021.

[43] D. Sidler, Z. Wang, M. Chiosa, A. Kulkarni, and G. Alonso, “Strom:
smart remote memory,” in Proceedings of the Fifteenth European
Conference on Computer Systems, pp. 1–16, 2020.

[44] J. Langlet, R. B. Basat, S. Ramanathan, G. Oliaro, M. Mitzenmacher,
M. Yu, and G. Antichi, “Direct telemetry access,” in Proceedings of the
ACM SIGCOMM 2023 Conference, 2023.

10

