
HyperCalm Sketch: One-Pass Mining Periodic
Batches in Data Streams

Zirui Liu†, Chaozhe Kong†, Kaicheng Yang†, Tong Yang†‡, Ruijie Miao†,
Qizhi Chen†, Yikai Zhao†, Yaofeng Tu§, and Bin Cui†

†School of Computer Science, and National Engineering Laboratory for Big Data Analysis Technology and Application,
Peking University, Beijing, China ‡Peng Cheng Laboratory, Shenzhen, China §ZTE Corporation

{zirui.liu, kcz, ykc, miaoruijie, hzyoi, zyk, bin.cui}@pku.edu.cn, {yangtongemail}@gmail.com, {tu.yaofeng}@zte.com.cn

Abstract—Batch is an important pattern in data streams, which
refers to a group of identical items that arrive closely. We find
that some special batches that arrive periodically are of great
value. In this paper, we formally define a new pattern, namely
periodic batches. A group of periodic batches refers to several
batches of the same item, where these batches arrive periodically.
Studying periodic batches is important in many applications, such
as caches, financial markets, online advertisements, networks,
etc. We propose a one-pass sketching algorithm, namely the
HyperCalm sketch, which takes two phases to detect periodic
batches in real time. In phase 1, we propose a time-aware
Bloom filter, namely HyperBloomFilter (HyperBF), to detect the
start of batches. In phase 2, we propose an enhanced top-k
algorithm, called Calm Space-Saving (CalmSS), to report top-
k periodic batches. We theoretically derive the error bounds for
HyperBF and CalmSS. Extensive experiments show HyperCalm
outperforms the strawman solutions 4× in term of average
relative error and 13.2× in term of speed. We also apply
HyperCalm to a cache system and integrate HyperCalm into
Apache Flink. All related codes are open-sourced.

Index Terms—Data Stream, Sketch, Periodic Batch

I. INTRODUCTION

A. Background and Motivation
Batch is an important pattern in data streams [1], which is

a group of identical items that arrive closely. Two adjacent
batches of the same item are spaced by a minimum interval
T , where T is a predefined threshold. Although batches can
make a difference in various applications, such as cache [1],
networks [2], and machine learning [3], [4], it is not enough
to just study batches. For instance, in cache systems, with
just the measurement results of batches, we are still not able
to devise any prefetching method and replacement policy.
Further mining some special patterns of batches is of great
importance. On the basis of batches, we propose a new pattern,
namely periodic batch. A group of periodic batches refers to
α consecutive batches of the same item, where these batches
arrive periodically. We call α the periodicity. Finding top-
k periodic batches refers to reporting k groups of periodic
batches with the k largest periodicities.

Studying top-k periodic batches is important in practice. For
example, consider a cache stream formed by many memory
access requests where each request is an item, periodic batches
provide insights to improve the cache hit rate. With the

Co-primary authors: Zirui Liu, Chaozhe Kong, and Kaicheng Yang. Corre-
sponding author: Tong Yang (yangtongemail@gmail.com).

historical information of periodic batches, we can forecast
the arrival time of new batches, and prefetch the item into
cache just before its arrival. For another example, in financial
transaction streams, periodic transaction batches could be an
indicator of illegal market manipulation [5]. By detecting
periodic batches in real time, we can quickly find those
suspicious clients that might be laundering money. Periodic
batches are also helpful in recommendation systems and
online advertisements, where the data stream is generated
when users click or purchase different commodities. A batch
forms when users continuously click or purchase the same
type of commodities. In this scenario, periodic batches imply
users’ seasonal and periodic browsing or buying behaviors [6]
(e.g., Christmas buying patterns that repeat yearly, or seasonal
promotion-related user behaviors). Studying periodic batches
can help us to better understand customer behavior, so that we
can deliver appropriate advertisements promptly to customers.
In addition, periodic batches are also important in networks.
In network stream, most TCP senders tend to send packets
in periodic batches [7]. If we can forecast the arrival time
of future batches, we can pre-allocate resources to them, or
devise better strategies for load balancing. To our knowledge,
there is no existing work studying periodic batches, and we
are the first to formulate and address this problem.

Finding periodic batches is a challenging issue. First, finding
batches is already a challenging issue. Until now, the state-of-
the-art solution to detect batches is Clock-Sketch [1], which
records the last arrival time of recent items in a cyclic array,
and uses another thread to clean the outdated information using
CLOCK [8] algorithm. However, to achieve high accuracy, it
needs to scan the cyclic array very fast, which consumes a
lot of CPU resources. Second, periodic batch is a more fine-
grained definition, and thus finding periodic batches is more
challenging than just finding batches. The goal of this paper
is to design a compact sketch algorithm that can accurately
find periodic batches with small space- and time- overhead.

B. Our Proposed Solution

To accurately detect periodic batches in real time, we
propose a one-pass sketching algorithm, namely HyperCalm.
HyperCalm takes two phases to find top-k periodic batches. In
phase 1, for each item e arriving at time t, we check whether
it is the start of a batch. If so, we query a TimeRecorder

queue to get the arrival time t̂ of the last batch of e, and
calculate the batch interval V = t − t̂. Then we send
this batch and its interval 〈e, V 〉 to the second phase. In
phase 2, we check periodicity and manage to record top-
k periodic batches, i.e., top-k 〈e, V 〉 pairs. In phase 1, we
devise a better algorithm than the state-of-the-art algorithm for
detecting batches, Clock-Sketch [1]. In phase 2, we propose an
enhanced top-k algorithm, which naturally suits our periodic
batch detection scenario.

In phase 1, we propose a time-aware version of Bloom
filter, namely HyperBloomFilter (HyperBF for short), to detect
batches. For each incoming item, phase 1 should report
whether the item is the start of a batch. In other words, this
is an existence detection algorithm. In addition to existence
detection, phase 1 should be aware of arrival time to divide
a series of the same item into many batches. Bloom filter [9]
is the most well-known memory-efficient data structure used
for existence detection. However, the existence detection of
Bloom filter is only low-dimensional, i.e., it is agnostic to time
dimension. Typical work aware of time dimension is Persistent
Bloom filter (PBF) [10]. It is an elegant variant of Bloom
filter, which uses a set of carefully constructed Bloom filters
to support membership testing for temporal queries (MTTQ)
(e.g., has a person visited a website between 8:30pm and
8:40pm?). MTTQ and batch detection are different ways to
be aware of time dimension. To enable Bloom filter to be
aware of time, our HyperBF extends each bit in Bloom filter
into a 2-bit cell, doubling the memory usage. Compared to
the standard Bloom filter, HyperBF has the same number of
hash computations and memory accesses for each insertion
and query. The only overhead for time awareness is doubling
the memory usage, which is reasonable and acceptable.

In phase 2, we propose an enhanced top-k algorithm,
called Calm Space-Saving (CalmSS for short), to report top-k
periodic batches. For each incoming batch and its interval, i.e.,
〈e, V 〉, phase 2 should keep periodic batches with large peri-
odicities, and evict periodic batches with small periodicities.
In other words, phase 2 keeps frequent 〈e, V 〉 pairs, and evicts
infrequent 〈e, V 〉 pairs, which is is a top-k algorithm. Typical
top-k algorithms include Space-Saving [11], Unbiased Space-
Saving [12], and Frequent [13]. However, their accuracy is
significantly harmed by cold items 1. This problem is more
serious in our scenario of periodic batch detection. This is
because one infrequent item may have multiple batches, and
one frequent item may also have multiple batches without
periodicity. Both the two cases above increase the number of
cold 〈e, V 〉 pairs. To identify and discard cold items, Cold
Filter [16] and LogLogFilter [17] record the frequencies of all
items in a compact data structure. However, considering the
large volume of data stream, this structure will be filled up very
quickly, and needs to be cleaned up periodically. To ensure the
one-pass property of our solution, it is highly desired to devise
a data structure which will never be filled up. Instead of record-

1Cold items refer to items with small frequencies (i.e., infrequent items),
and hot items refer to items with large frequencies (i.e., frequent items). In
practice, most items are cold items, which appear just several times [14], [15]

ing all items, our solution is to just record the frequencies
of some items in the sliding window, and discard those cold
items in the sliding window. Rather than using existing sliding
window algorithms [18], [19], [20], this paper designs an LRU
queue working together with Space-Saving because of the
following reasons. First, our LRU queue is elastic: users can
dynamically tune its memory usage to maintain a satisfactory
accuracy. Second, our LRU queue has elegant theoretical
guarantees (see details in § III-C). Third, our LRU queue can
be naturally integrated into the data structure of Space-Saving
(see details in § III-D): such combination achieves higher
accuracy and higher speed. Our combination is faster because
the LRU queue efficiently filters most cold items, and thus
the complicated replacement operations incurred by cold items
are avoided (see Figure 11c). Actually, besides the application
of periodic batch detection, our LRU queue can improve the
accuracy/speed of any streaming algorithms. We can handle
any case that Cold filter can handle, and we are both time-
and space- more efficient than Cold filter (§ V-C). All related
codes are open-sourced [21].

C. Key Contributions
� We formulate the problem of finding periodic batches in

data streams. We believe this is an important problem in
data mining.

� We propose an accurate, fast, and memory efficient Hyper-
Calm sketch to detect periodic batches in real time. Both
the two components of HyperCalm, HyperBF and CalmSS,
significantly outperform the state-of-the-art solutions in de-
tecting batches and finding top-k items, respectively.

� We derive theoretical guarantees for our HyperBF and
CalmSS, and validate our theories using experiments.

� We conduct extensive experiments showing that HyperCalm
well achieves our design goal. The results show HyperCalm
outperforms the strawman solutions 4× in term of average
relative error and 13.2× in term of processing speed.

� We apply HyperCalm to a cache system showing that peri-
odic batches can benefit real-world application. We integrate
HyperCalm into Apache Flink [22] showing that HyperCalm
can smoothly work in distributed systems.

II. BACKGROUND AND RELATED WORK

A. Problem Statement
Batches: A data stream is an infinite sequence of items where
each item is associated with a timestamp. A batch is defined
as a group of identical items in the data stream, where the
time gap between two adjacent batches of the same item must
exceed a predefined threshold T . For convenience, in this
paper, two adjacent batches mean two batches belong to the
same item by default. The arrival time of a batch is defined
as the timestamp of the first item of this batch. We define the
interval/time gap between two adjacent batches as the interval
between their arrival times.
Periodic batches: A group of periodic batches refers to α
consecutive batches of the same item, where these batches
arrive with a fixed time interval. We call α the periodicity.

Here, the “�xed time interval” is not the exact time, but the ap-
proximate (noise-tolerant) time rounded up to the nearest time
unit (e.g., one millisecond). Finding top-k periodic batches
refers to reportingk groups of periodic batches with thek
largest periodicities. Note that one item may have more than
one group of periodic batches, and thus can be reported more
than once.
Example (Figure 1): We present an example to further clarify
our problem de�nition. We focus on two kinds of distinct items
e1 and e2 in the data stream. Fore1, its 6 batches form a
group of periodic batches. Fore2, it has two groups of periodic
batches, with the periodicities of4 and 5, respectively. Note
that some batches ofe2 just have one item.

Fig. 1: Example of periodic batches.

Discussion: The de�nition of periodic batches is a design
choice related to �nal application. We think our de�nition of
periodic batches is most general, which can bene�t many real-
world applications (seex V-E as an example). However, certain
application may also care about other aspects of periodic
batches, such as batch size and distance. For example, some
application may just want to detect those periodic batches
that are large enough in size. It is not hard to detect those
variants of periodic batches by adding small modi�cation
to our solution. Further formulating more application-speci�c
variants of periodic batches is our future work.

B. Related Work

Related work is divided into three parts: 1) algorithms for
batch detection; 2) algorithms for �nding top-k frequent items;
and 3) algorithms for mining periodic patterns.
Batch detection: Item batch is de�ned very recently in [1],
which proposes Clock-Sketch to �nd batches. Clock-Sketch
consists of an array ofs-bits cells. For each incoming item,
it sets thed hashed cells as2s � 1. For query, if one of the
d hashed cells is zero, it reports a batch. Clock-Sketch uses
an extra thread to cyclically sweep the cell array at a constant
speed and decreases the swept non-zero cells by one. The
sweeping speed is carefully selected to avoid false-positive
errors. Besides Clock-Sketch, some sliding window algorithms
can be applied to �nd batches, includingTime-Out Bloom
Filter (TOBF) [23] andSWAMP[24].
Finding top-k frequent items: To �nd top-k frequent items
in data streams, existing approaches maintain a synopsis data
structure. There are two kinds of synopses:sketchesand KV
tables. 1) Sketches usually consist of multiple arrays, each
of which consists of multiple counters. These counters are
used to record the frequencies of the inserted items. Typical

sketches include CM [25], CU [26], Count [27], and more
[28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38].
However, sketches are memory inef�cient because they record
the frequencies of all items, which is actually unnecessary.2)
KV tables record only the frequent items. Typical KV table
based approaches include Space-Saving [11], Unbiased Space-
Saving [12], Frequent [13], and more [39], [40]. Space-Saving
and Unbiased Space-Saving record the approximate top-k
items in a data structure called Stream-Summary. However,
their accuracy is signi�cantly degraded by cold items. To
address this issue, Cold Filter [16] uses a two-layer CU sketch
to �lter cold items. However, as aforementioned, the structure
of Cold Filter will be �lled up very quickly. Cleaning the
full Cold Filter will inevitably incur error and time overhead,
which is still not addressed.
Mining periodic patterns: Although there have been some
algorithms aiming at mining periodicity in time sequence
data [41], [42], [43], [44], [45], [46], [47], their problem
de�nitions are different from ours. More importantly, most
of them do not meet the requirements of data stream model
processing: 1) each item can only be processed once; 2) the
processing time of each item should beO(1) complexity and
fast enough to catch up with the high speed of data streams.
For example, TiCom [44] de�nes a periodical problem in an
incomplete sequence data, and develops an iterative algorithm
with time complexity ofO(n2). RobustPeriod [42] proposes
an algorithm based on discrete wavelet transform with time
complexity of O(n logn). Further, there are some works
which elegantly use Fast Fourier Transform (FFT) or Auto
Correlation Function (ACF) to address different de�nitions of
periodic items, such as SAZED [45]. These algorithms need
to process one item multiple times, and thus cannot meet the
above two requirements.

TABLE I: Symbols frequently used in this paper.
Symbol Meaning

e ID of an item in a data stream
T Batch threshold spacing two adjacent batches
d Number of arrays in HyperBF
Bi The i th array of HyperBF
m Number of 2-bit cells in each arrayBi
l Number of 2-bit cells in each block

h i (�) Hash function mapping an item into a cell inBi
V Time interval of two adjacent batches of an item
c Length of the TimeRecorder queue

E = he; V i An entry in phase 2, which is the concatenation of
an iteme and its batch intervalV , i.e., he; V i

w Length of the LRU queue in CalmSS
P Prede�ned promotion threshold of the LRU queue

III. T HE HYPERCALM SKETCH

Overview (Figure 2): The work�ow of the HyperCalm sketch
consists of two phases:1) A HyperBloomFilter (HyperBF)
detecting the start of batches; and2) A Calm Space-Saving
(CalmSS) recording and reporting top-k periodic batches. In
addition, we design a TimeRecorder queue to record the last
batch arrival time for potential periodic batches. Given an
incoming iteme arriving at timet, we �rst propose HyperBF
to check whether it is the start of a batch. If so, we query the

TimeRecorder queue to get the arrival timet̂ of the last batch
of e and calculate the batch intervalV = t � t̂ . 2 Then we
update the arrival time of last batch ofe in the TimeRecorder
queue tot. Next, we sende and its batch intervalV to
CalmSS to detect top-k periodic batches. We combine the ID
of item e and its intervalV to form an entry E = he; Vi ,
and insert the entry into CalmSS. CalmSS reportsk groups of
periodic batches with thek largest periodicities,i.e., reports
top-k entries with thek largest frequencies, where each entry
is an he; Vi pair. We use a hash table index to accelerate
the lookup process of the TimeRecoder queue and CalmSS,
achieving O(1) processing time complexity (see more details
in x III-B and x III-C). The main symbols used in this paper
are listed in Table I.

Fig. 2: HyperCalm sketch work�ow.

A. The HyperBF Algorithm
Rationale: To enable Bloom �lter to be time-aware, the key
technique of HyperBF is to extend every bit in Bloom �lter
into a 2-bit cell, and use these cells to compactly record the
approximate last arrival time of recent items. Although we can
also use 3-bit or 4-bit cells, we �nd that under �xed memory,
using 2-bit cells achieves the best accuracy. Since 2-bit cell
can represent 4 states (0� 3), HyperBF cyclically divides the
timeline into three kinds of time slices (1� 3), and the length of
each time slice isT , whereT is the prede�nedbatch threshold
(see Figure 4a). These time slices are recorded in the 2-bit cells
of HyperBF. HyperBF needs to clean all outdated time slices
ef�ciently. Rather than using an extra thread like Clock-Sketch
[1], HyperBF incidentally cleans the outdated cells during each
insertion operation. Compared with standard Bloom �lter, Hy-
perBF has the same number of hash computations and memory
accesses for each insertion and query. Further, we propose a
novelAsynchronous Timelinetechnique to signi�cantly reduce
the error of HyperBF. Theoretical guarantees of HyperBF are
provided inx IV.
Data structure: HyperBF consists ofd arraysB1; � � � ; Bd.
Each arrayBi hasm 2-bits cellsBi [1]; � � � ; Bi [m], which are
evenly divided intom

l blocks with l 2-bit cells. Each block
can �t into the size of a cache line, and thus could be read or
write through one memory access. When checking one cell, we
can incidentally access the other cells in its block, which does
not incur extra memory accesses. Each arrayBi is associated

2To tolerate noise in batch interval, in our experiments,V is rounded up
according to the regulations described in the parameter setting part ofx V-D.

with a hash functionhi (�) that maps an item into a cell in it.
As mentioned above, HyperBF divides the timeline into three
kinds of time slices (1� 3). Each cell stores a time slice (1� 3)
or a zero �ag (0). We preserve the zero value of cells as the
batch �ag: once an incoming is mapped into a cell with batch
�ag, a new batch starts. For example in Figure 3, HyperBF
has2 cell arrays, each of which has4 2-bit cells which are
divided into 2 blocks. For simplicity, each block hasl = 2
cells here. In practice, we can set theblock size to any value
no more than 64B (l 6 256), i.e., no more than the cache line
size. All cells are initialized to 0.
Insert: For each incoming iteme with timestampt, we �rst
calculate the current time slices = b t

T c mod 3 + 1. We
calculate thed hash functions to locate thed hashed cellsof e:
B1[h1(e)]; � � � ; Bd[hd(e)]. For each hashed cell, we check the
block which the cell resides, and incidentally cleanoutdated
cells to zero �ag. Speci�cally, if the current time slice is1,
time slice 2 is outdated; if the current time slice is2, time
slice 3 is outdated; if the current time slice is3, time slice
1 is outdated. Due to the high speed of the data stream, all
outdated cells will be cleaned in time (see theoretical results
in x IV). After cleaning, if any one of thed hashed cells is
zero �ag, HyperBF reports the start of a batch. Finally, we
update alld hashed cells to the current time slices.

Fig. 3: Two examples of HyperBF (d = 2 , m = 4 , l = 2).

Example 1 (left of Figure 3): For item e1 arriving at time
slice snow = 1 , we �rst locate its two hashed cellsB1[2] and
B2[3] by calculatingh1(e1) and h2(e1). Next, we clean the
outdated cells with value2. For B1[2], we check all cells in
its block (i.e., B1[1] and B1[2]), and clean the outdated cell
B1[1] to zero. For B2[3], we clean the outdated cellB2[3] to
zero. After cleaning, since the second hashed cellB2[3] is
zero, we report the start of a batch. Finally, we update the two
hashed cells tosnow .
Example 2 (right of Figure 3): For iteme2 arriving at time
slice snow = 2 , we �rst locate its two hashed cellsB1[3] and
B2[4]. Next, we check the blocks which the two hashed cells
reside, and clean the outdated cells with value3, i.e., clean
B1[4] to zero. Since after cleaning, both the two hashed cells
are notzero, we do not report a batch. Finally, we updateB1[3]
andB2[4] to snow .
Error analysis: HyperBF might miss some batches, but
the reported batches are always true. The error of missing
batches comes from three aspects.1) The error incurred by
hash collision, which is the cause of false positive error of
Bloom �lters. 2) The error incurred by outdated cells that are
not cleaned in time.3) The error incurred by coarse-grained

timeline division. We provide the theoretical analysis of the
three kinds of error inx IV, proving that the impact of the
�rst two kinds of error are negligible. For the third error,
essentially, our 2-bit time slice is a coarse-grained timeline
division: the gain is extremely high memory ef�ciency, and the
cost is the fuzzy perception of time. Fortunately, we found the
error incurred by fuzzy perception of time can be signi�cantly
reduced by the technique ofAsynchronous Timeline.
Asynchronous Timeline: HyperBF perceives time in a fuzzy
way. When the interval between two adjacent batches is among
T � 2T , HyperBF might not be able to report the second
batch correctly, depending on the relative offset of the timeline.
Speci�cally, only when the interval span three time slices can
HyperBF be able to report the second batch. This issue is
illustrated in Figure 4a. Although the time interval between the
two occurrences ofe1 exceedsT , HyperBF cannot correctly
divide them into two batches because the interval span just
two time slices. Therefore, when the current time slice is1,
time slice3 is not outdated. To address this issue, we propose
theAsynchronous Timelinetechnique. Our key idea is to used
different timeline offsets for thed arrays to enhance the ability
of batch perception. In this way, as long as the interval spans
three time slices in any one of thed timelines, HyperBF can
perceive the second batch correctly. As shown in Figure 4b,
after using theAsynchronous Timelinetechnique, the interval
spans three time slices in the second array. In this example,
HyperBF can correctly perceive the second batch. We derive
theoretical guarantees forAsynchronous Timelineusing linear
programming model in Theorem IV.3 inx IV, proving that the
time division error can be reduced byd times when usingd
evenly distributed timelines.

(a) Synchronous. (b) Asynchronous.
Fig. 4: Optimization usingAsynchronous Timeline

B. The TimeRecoder Algorithm
To record the last arrival time of batches, a strawman

solution is to use a huge hash table to store the arrival time
of the last batches for all items. This is memory inef�cient,
because most batches are not periodic. To address this issue,
we propose TimeRecorder aiming to only store the time for
those batches that are potential top-k periodic batches. The
data structure of TimeRecorder is essentially a circular queue,
which is implemented as a doubly linked list ofc nodes.
Each node records an item ID. We build the �rst hash table
index (Index_1) for TimeRecorder. For each iteme in the
TimeRecorder queue, we store the arrival timet̂ of its last
batch inIndex_1 .

For each incoming batch of iteme at timet, we �rst query
Index_1 to check whether the arrival time of its last batch
is recorded.1) If so, we calculate the batch intervalV = t � t̂ .
Then we combine the item IDe and its batch intervalV to
form an entryE = he; Vi , and send the entry to CalmSS.

Finally, we update the timestamp ofe to the current time
t. 2) If not, we inserte into the TimeRecorder queue, and
store the arrival timet of its last batch inIndex_1 . If the
TimeRecorder queue is already full before insertion, we evict
the oldest (least recently accessed) iteme0 to make room for
e. Note that ife0 has periodic batches (i.e., it is maintained in
CalmSS), we still preserve the arrival time of its last batch in
Index_1 . For the implementation details, please seex III-D.

Our TimeRecorder evicts the following items:1) Items that
are old and do not show periodicity; and2) Items whose
batches have long periods, which have little potential to
become top-k periodic batches. The TimeRecorder keeps the
items that are highly likely to have top-k periodic batches, and
discard other items which are the major part of the data stream.
Therefore, our TimeRecoder queue is much more memory
ef�cient than the above strawman solution.

(a) Data structure. (b) Insertion work�ow.
Fig. 5: Data structure and work�ow of CalmSS.

C. The CalmSS Algorithm
Rationale: Phase 2 uses a top-k algorithm to report top-k
periodic batches. The most well-known top-k algorithm is
Space-Saving [11], which works by maintaining a Min-Heap
of m bins. For each incoming entryE1

3, if it is in the heap, it
increments its counter by one; otherwise, it updates one of the
smallest bins (Emin ; f min) to (E1; f min +1). In this way, each
incoming entry increments a counter in Space-Saving. Recall
that in phase 2, most entries are cold entries, which appear just
several times. All increments by cold entries are unnecessary,
and signi�cantly increase the overestimation error. Therefore,
we propose CalmSS to minimize the in�uence of cold entries.
The key idea of CalmSS is to use a queue to discard cold
entries. The queue records the frequency of entries in the
sliding window. This queue follows the LRU strategy: the
least recently visited cold entry will be discarded, and hot
entries will be moved to Space-Saving. Speci�cally, for each
incoming entry, it is �rst inserted into the queue: if it appears
too few times in the sliding window, it will be discarded;
otherwise, it will be moved to the Space-Saving. ThisLRU
Queuecan be considered as a guardian of Space-Saving to
keep cold entries outside. We theoretically prove the error
bound of CalmSS inx IV.
Data structure (Figure 5a): CalmSS consists of an LRU
queue and a Space-Saving (it is essentially an Min-Heap):1)

3Each entryE = he; V i is the concatenation of an item IDe and a batch
interval V .

The LRU queue uses a sliding window ofw bins to keep
the recentw distinct entries. Each bin stores a key-value pair
(E; f), where the key is an entry ID and the value is a small
counter recording the frequency ofE . The LRU queue uses a
prede�ned thresholdP (called promotion threshold) to �lter
out cold entries: Once the counter of an entryE reaches
P, it means it is not a cold entry, and thus we removeE
from the LRU queue and insert it into the Space-Saving.2)
The Space-Saving uses a Stream-Summary [11] and a hash
table to achieve O(1) time complexity to locate and update
the smallest entry. The hash table is used to index both the
Stream-Summary and the LRU queue. Note that CalmSS is
a meta-framework that accommodates any top-k algorithm,
which means the Space-Saving can be replaced by other top-k
algorithm, such as Unbiased Space-Saving [12] and Frequent
[48]. We use Space-Saving because it has the best theoretical
results. Similar to the TimeRecoder, we build the second and
third hash table indices (Index_2 and Index_3) for the
LRU queue and the Space-Saving, respectively.
Insert (Figure 5b): For each incoming entryE = he; Vi ,
we �rst query it in the hash indices:1) If E is in the Space-
Saving, we just increment its counter by one.2) If E is in
the LRU queue, we increment the small counter ofE in the
LRU queue by one. After increment, if the small counter
reaches the prede�ned promotion thresholdP, we removeE
from the LRU queue and insert(E; P) into the Space-Saving.
Speci�cally, if the Min-Heap is already full before inserting
E , we update the smallest node(Emin ; f min) in the Space-
Saving to(E; f min + P). 3) If E is not in the LRU queue, we
insert(E; 1) into the LRU queue. If the LRU queue is already
full before insertingE , we evict the least recently accessed
entry to make room forE .
Report: To report top-k periodic batches, CalmSS just reports
the k entries with thek largest frequencies in the Min-Heap.
Note that one item could have multiple groups of periodic
batches, and thus could be reported more than once.

D. Implementation

In our implementation, we combine the three hash indices
(Index_1 , Index_2 , and Index_3) into one hash table
index Index_all . For each key-value pair in the hash table
Index_all , it includes one key (item ID)e and three values:
1) A timestamp̂t, which is the arrival time of the last batch of
e; 2) Two entry listsList_1 andList_2 , which record the
corresponding entries ofe (they are essentially some batch
intervals of e) that are in the LRU queue and the Space-
Saving (Min-Heap), respectively. Each node in the two entry
lists uses a pointer to index the location of the LRU queue or
the Space-Saving.3) A counter recording the sum of several
parts: the number of appearances ofe in the TimeRecorder,
and the lengths of the two lists. We deletee from the hash
table once its counter is decremented to zero. In this way, for
all items that have periodic batches, their last batch arrival
time is maintained inIndex_all even if they are not in the
TimeRecorder queue.

IV. M ATHEMATICAL ANALYSIS

In this section, we provide a thorough theoretical support for
the HyperCalm sketch, and validate our theoretical analyses
using experiments. Our theoretical analyses focus on the
following three key issues.
� How accurate can HyperBF detect batches?We derive the

error bound of HyperBF in Lemma IV.4 and Theorem IV.1,
and conduct experiments to validate our bound in Figure 7b.
The results show that both theoretical and experimental error
rate are smaller than0:01 in common cases.

� How accurate can CalmSS detect top-k periodic batches?
We derive the error bound of CalmSS in Theorem IV.2, and
conduct experiments to validate our bound in Figure 8. The
results show that both theoretical and experimental error rate
are smaller than0:01 in common cases.

� Is the Asynchronous Timeline technique of HyperBF
effective? We theoretically analyze the accuracy gain of
Asynchronous Timelinetechnique in Theorem IV.3, and con-
duct experiments to validate it in Figure 9b. Both theoretical
and experimental results show thatAsynchronous Timeline
technique signi�cant improves the accuracy of HyperBF.

A. Error rate of HyperBF
We �rst prove the error rate of HyperBF in Theorem IV.1.

A data stream can be formulated by two variables: density
� and activity � , where density� is the number of distinct
items observed at each moment, and activity� is the number
of distinct items emerging/dying per unit time. Consider two
consecutive time intervalT1 andT2. The numbers of distinct
items observed inT1 and T2 are � + �T 1 and � + �T 2,
respectively. And the number of distinct items observed in
the two intervals is� + � (T1 + T2). Most data streams can be
formulated by these two variables. Take CAIDA [49] dataset
as an instance, Figure 7a shows the average number (� 5std)
of distinct items observed in time intervals of different length.
We can see that the linear relationship almost holds where
� = 3195:2 and � = 35238:9. Next, consider two adjacent
occurrences of iteme at t1 and t2, wheret2 � t1 > 2T . Let
K = bt 2

T c � b t 1
T c. Let n = � + �n T denote the number of

distinct items observed in a time interval of lengthnT .

Fig. 6: Error rate analysis of HyperBF.

As shown in Figure 6, consider two adjacent occurrences
of an iteme in the data stream. Assume the timestamps of the
two occurrences aret1 andt2, respectively. Assumet2 � t1 >
2T , meaning that the second occurrence ofe is the start of
a batch and there is notime division error. Next, we derive
the error rate of HyperBF, which is de�ned as the probability
that HyperBF does not report a batch att2.

Now consider a certain hashed cellBi [hi (e)] of item e. It
is obvious thatBi [hi (e)] is accessed bye at both t1 and t2.

Let t0 be the last time thatBi [hi (e)] was accessed beforet2.
We havet1 6 t0 < t 2. In particular, if t0 = t1, we can assert
that there is no item hashed intoBi [hi (e)] betweent1 andt2.
Assume that0 6 t1 < T and K T 6 t2 < (K + 1) T , i.e.,
K =

� t 2
T

�
�

� t 1
T

�
. Sincet1 and t2 are two arbitrary selected

timestamps, and the timeline can be arbitrarily speci�ed,
the above assumption does not impair generality. Next, we
use symbolRi (0 6 i 6 K) to denote the time interval
[(K � i)T ; (K + 1 � i)T). We restrict the range of possible
t0 into [T ; (K + 1) T). And we can assume thatBi [hi (e)] can
be cleaned by other items only in[0; K T).

Lemma IV.1. Let A 0
j denote the event thatt0 6 (K + 1 �

j)T . Let j 0 = (j � K � 1)T + t 2

T . Then we have81 6 j < K ,

Pr
�
A 0

j

�
� e�

 j 0
m .

Proof. The probability thatBi [hi (e)] is not selected by a
certain hash function during the insertion of an item is1� 1

m .
Note thatt0 6 (K + 1 � j)T is equivalent to the statement
that Bi [hi (e)] is not selected by any item that arrives between
(K + 1 � j)T and t2. From our data stream assumption, the
number of distinct items arrives between(K + 1 � j)T and
t2 is j 0 = � + � (j � K � 1)T + �t 2. Since the hash values
of distinct items have no signi�cant correlation between each
other, then the probability thatBi [hi (e)] is not selected by any
of the j 0 distinct items isPr

�
A 0

j

�
=

�
1 � 1

m

� j 0 � e�
 j 0
m

Lemma IV.2. For 80 6 j < K , let A 0
j denote the event

that t0 6 (K � j + 1) T , and let A j denote the event that
(K � j) T 6 t0 < (K � j + 1) T , i.e., the event thatt0 2 Rj .
Then we have that for81 6 j < K , Pr (A j) > e �

 j
m � e�

 j +1
m .

Proof. It is obvious that for80 6 j < K , we have

Pr
�
A 0

j

�
= Pr

�
A 0

j +1

�
+ Pr (A j)

According to Lemma IV.1, we have that for81 6 j < K :

Pr (A j) = Pr
�
A 0

j

�
� Pr

�
A 0

j +1

�
� e�

 j 0
m � e�

 j 0+1
m

= e� � + � (j � K � 1) T + �t 2
m

�
1 � e� � T

m

�

= e�
 j 0
m

�
1 � e� � T

m

�

Sincet2 < (K + 1) T , we have that j 0 = � + � (j � K �
1)T + �t 2 < � + �j T = j .

Thus, we have

Pr (A j) = e�
 j 0
m

�
1 � e� � T

m

�
> e �

 j
m

�
1 � e� � T

m

�

= e� � + �j T
m � e� � + � (j +1) T

m = e�
 j
m � e�

 j +1
m

Lemma IV.3. Let m0 = m
l � 1 . Givenu time intervals of length

T , T1; � � � ; Tu , let Cu denote the event that a certain cell, e.g.,
Bi [hi (e)], is cleaned at least once in these time intervals. Then
we have:

1 � e� u
m 0 6 Pr (Cu) 6 1 � e� u 1

m 0

Proof. For each incoming itemei , Bi [hi (e)] is cleaned if and
only if ei is hashed into the same block but not the same cell
with e. Therefore, the probability thatBi [hi (e)] is not cleaned
during the insertion ofei is 1 � l � 1

m = 1 � 1
m 0 .

Let x be the number of distinct items in theu intervals,
T1; � � � ; Tu . According to the data stream assumption, we have
 u 6 x 6 u 1. Actually, when theu intervals are consecutive,
we have x = u , and when theu intervals are disjoint
and separated far away enough from each other, we have
x = u 1. Since the probability thatBi [hi (e)] is not cleaned
in T1; � � � ; Tu is

�
1 � 1

m 0

� x
� e� x

m 0 , we havePr (Cu) =
1� e� x

m 0 . Thus, we have1� e� u
m 0 6 Pr (Cu) 6 1� e� u 1

m 0 .

Lemma IV.4. Let P be the probability that a certain hashed
cell of item e (e.g., Bi [hi (e)]) is zero at t2. Let m0 = m

l � 1
and uj =

� j � 2
3

�
. Let K 1 =

�
K
3

�
� 1, K 2 =

�
K � 1

3

�
� 1,

and K 3 =
�

K � 2
3

�
� 1. Then the lower bound ofP is

P0 = P0
1+ P0

2+ P0
3, whereP0

1 =
P K 1

k=0

�
e�

 3k +2
m � e�

 3k +3
m

�
,

P0
2 =

P K 2
k=0

�
e�

 3k +3
m � e�

 3k +4
m

� �
1 � e�

 u 3k +3
m 0

�
, and

P0
3 =

P K 3
k=0

�
e�

 3k +4
m � e�

 3k +5
m

� �
1 � e�

 u 3k +4
m 0

�
.

Proof. Now we discuss the possible range oft0. Since our
goal is to derive the lower bound ofP, we can just ignore
the case wheret0 2 RK . And we note that whent0 2 R0 or
t0 2 R1, Bi [hi (e)] cannot bezero at t2. Therefore, we only
discuss the cases whereT 6 t0 < (K � 1)T , i.e., the cases
wheret0 2 Rj (2 6 j 6 K � 1).

First, consider the cases wheret0 2 R3k+2 (0 6 k 6�
K
3

�
� 1). In these cases,Bi [hi (e)] will be cleaned tozero

when inserting iteme at t2. Let K 1 =
�

K
3

�
� 1. We can

derive the �rst part of P as P1 =
P K 1

k=0 Pr (A 3k+2) =
P K 1

k=0

�
e�

 3k +2
m � e�

 3k +3
m

�
= P0

1.
Second, consider the cases wheret0 2 R3k+3 (0 6 k 6�

K � 1
3

�
� 1). As shown in Figure 6, whent0 2 R6, in order

to guarantee thatBi [hi (e)] = 0 at t2, Bi [hi (e)] must be
cleaned at least once in time intervalsR4 andR1. Generally,
when t0 2 Rj , let uj denote the number of intervals in
which Bi [hi (e)] should be cleaned at least once. Then we
haveuj =

� j � 2
3

�
. Let K 2 =

�
K � 1

3

�
� 1. We can derive the

second part ofP as P2 =
P K 2

k=0 Pr (A 3k+3) Pr
�
Cu 3k +3

�
>

P K 2
k=0

�
e�

 3k +3
m � e�

 3k +4
m

� �
1 � e�

 u 3k +3
m 0

�
= P0

2.
Third, consider the cases wheret0 2 R3k+4 (0 6 k 6�

K � 2
3

�
� 1). These cases are similar to the cases in the second

part, and the proof is also similar.
In summary, we have thatP = P1+ P2+ P3 > P0

1+ P0
2+ P0

3.

Theorem IV.1. We de�ne the error rateE of HyperBF (with-
out Asynchronous Timeline) as the probability that HyperBF
does not report a batch att2. Then we have:

E 6 (1 � P0)d

whereP0 is the lower bound in Lemma IV.4.

Proof. Note that HyperBF does not report a batch att2 if
and only if all d hashed cellsB1[h1(e)]; � � � ; Bd[hd(e)] are
zero at t2. Since thed arrays of HyperBF are independent
of each other, we have thatE = (1 � P)d, whereP is the
probability that one hashed cell iszero at t2. Thus, we have
E 6 (1 � P0)d, whereP0 is the lower bound ofP derived in
Lemma IV.4. This gives the proof of Theorem IV.1.

Experimental analysis (Figure 7b):We conduct experiments
on CAIDA [49] dataset to validate the theoretical bound in
Lemma IV.4. We use the HyperBF that just has one array (d =
1), and allocate 4KB of memory to it (m = 16000). The results
show that the experimental error rate is always well bounded
by theoretical bound. As the volume of CAIDA data stream
is very large, almost all outdated cells in HyperBF can be
cleaned promptly. Therefore, the experimental error rate does
not vary with K . As K grows larger, our theoretical bound
becomes more accurate. Note that we only focus on a single
array of HyperBF here. If we use the HyperBF consisting of
d = 8 arrays, the error rate will be< 0:01.

(a) Data stream. (b) Error rate.
Fig. 7: Error rate of HyperBF.

B. Error rate of CalmSS
We de�ne the error rate� of CalmSS as the probability

that a cold item fails to be discarded by LRU queue,i.e.,
the probability that a cold item enters the top-k algorithm in
CalmSS. Next, we derive the upper bound of� .

We assume the data stream consists of two types of items:
cold items and hot items, and all items of the same type
have the same arrival speed. The data stream is essentially
the sum of many independent Poisson processes of two kinds
(hot items and cold items). Let� h and � c be the parameters
of the two Poisson processes, respectively. Letnh and nc be
the number of distinct hot items and cold items, respectively.
Notice thatnh � w andnc � w. Therefore, we can assume
that in a short time interval, all arriving items are distinct.
Consider a cold iteme, we assume all items that arrives
between the time whene enters the LRU queue and the time
whene is removed from the LRU queue are distincthot items.
Here, we assume all of these items are hot because we want
to derive an upper bound of� . Cold items only promote the
LRU queue to discarde, resulting in a smaller� .

Theorem IV.2. For a cold iteme, the probability� that it fails
to be discarded by CalmSS, i.e., the error rate of CalmSS, is

� =

w� 1X

x =0

1
x!

Rx

(R + 1) x +1 �(x + 1)

! P� 1

whereR = n h � h
� c

, and �(z) represents the Gamma function.

Proof. Supposee fails to be discarded by the LRU queue,i.e.,
it enters the top-k algorithm. Thene must arrivesP times in a
short time, and each arrival increments the counter ofe in the
LRU queue by one. Let random variablesT1; T2; � � � ; TP� 1

be the time gaps between every two adjacent occurrences of
e. As e arrives according to a Poisson process of intensity� c,
we haveTi follows an exponential distribution with mean� c.

Let D i denote the event that there arrivew hot items within
Ti . It is clear thatD1; � � � ; DP� 1 are independent of each
other. Recall that the Poisson processes of different hot items
are independent of each other. Let� 1 = nh � h and � 2 = � c.
The probability of the event that there arrivex hot items within
T is Px;T = (� 1 T)T

x ! e� � 1 T .
Then we have:

Pr(D i) =
w� 1X

x =0

Px;T i =
w� 1X

x =0

(� 1Ti)T i

x!
e� � 1 T i

Recall that the Poisson processes of all distinct items are
independent of each other. Then we have:

� = Ef T1 ;��� ;T P� 1 g

�
Pr

P� 1Y

i =1

D i

! �

= Ef T1 ;��� ;T P� 1 g

� P� 1Y

i =1

Pr(D i)
�

=
P� 1Y

i =1

ET i [Pr(D i)]

Further, we have:

� =
P� 1Y

i =1

ET i [Pr(D i)] =
P� 1Y

i =1

w � 1X

x =0

Z + 1

0

(� 1t i)x

x!
e� � 2 t i dt i

=

w� 1X

x =0

1
x!

Rx

(R + 1) x +1 �(x + 1)

! P� 1

whereR = � 1
� 2

and�(z) represents the Gamma function.

Experimental analysis (Figure 8): We conduct experiments
to validate our theoretical bound in Theorem IV.2. We set
w = 16, P = 4 , and generate the data stream using two
kinds of Poisson processes wherenh = 50 and nc = 1 . The
results show that the experimental error rate is always bounded
by the theoretical upper bound. Note that whenR < 50,
the intensity of cold items� c is smaller than the intensity
of hot items � h , meaning that cold items are actually not

Fig. 8: Error of CalmSS.

cold. Therefore, whenR is
small, CalmSS has large theoret-
ical and experimental error. As
R increases, our data stream as-
sumption will be closer to truth.
When R > 50, � c < � h ,
meaning that the cold items are
really cold. WhenR = 125, the
theoretical error rate is10� 2 and
the experimental error rate is10� 4, showing that CalmSS is
highly effective in �ltering cold items in real cases.

C. Effectiveness of Asynchronous Timeline
Theorem IV.3. After using the Asynchronous Timeline tech-
nique, the time division error is minimized when thed timelines
are evenly distributed, i.e., when the timeline offset for thei th

array is oi = (i � 1)
d T , where the minimized error is reduced

by d times compared to the synchronous version.

Proof. The time division error occurs only when the batch
interval spans two time slices in all of thed timelines. Without
loss of generality, we take the �rst timeline as the reference
timeline, i.e., we seto1 = 0 , and we supposeo1 < o 2 < � � � <
od < T . Consider two batches arrives at timestampsxT and
(2 � y)T respectively, wherex > 0, y > 0, andx + y < 1.
The interval between the two batches is� t = (2 � y � x)T .
It is clear thatT < � t < 2T . Consider thei th timeline with
offsetoi 2 [0; T), it can correctly perceive the second batch if
and only if xT < o i and(2 � y)T > T + oi . In other words,
the i th timeline can correctly perceive the second batch if the
interval meets the above two constraints.

Our goal is to �nd the optimalo2; � � � ; od 2 [0; T) to
perceive as much intervals as possible. Suppose the valid
values ofx andy are uniformly distributed, the above problem
can be transformed into a linear programming problem. As
shown in Figure 9a, the triangular area under the linex+ y = 1
represents the feasible range ofx andy. Let oi = � i T where
� i 2 [0; 1). Each timeline with offsetoi enables the intervals
lie in the rectangular areax > 0, y > 0, x < � i , andy < 1� � i

to be correctly perceives. Therefore, the goal of the linear
programming is to maximize the total areaS, which is the
union of thed � 1 rectangles. And we have:

S = � 2(1 � � 2) + (� 3 � � 2)(1 � � 3) + (� 4 � � 3)(1 � � 4)

+ � � � + (� d � � d� 1)(1 � � d)

By applying the method of Lagrange multipliers, we can
easily derive thatS is maximized when� i = (i � 1)

d , i.e., oi =
(i � 1)

d T , and the maximizedS is d� 1
d times of the triangular

area. Thus,asynchronous timelinereduces the error byd times.

(a) Linear programming. (b) Time division error.
Fig. 9: Asynchronous Timeline analysis.

Experimental analysis (Figure 9b):We conduct experiments
on CAIDA [49] to validate Theorem IV.3. We set the batch
thresholdT to 1.454�s , and �x the memory usage of Hy-
perBF to 50KB. We �nd thatAsynchronous Timelinetechnique
signi�cantly improves the accuracy of HyperBF. We also �nd
that when usingAsynchronous Timeline, HyperBF usingd
evenly distributed timelines is more accurate than HyperBF
using d randomly distributed timelines. For example, when

usingd = 8 arrays, the RR of the basic HyperBF is61%, while
that of the HyperBF usingAsynchronous Timelineis about
80%. Speci�cally, the RR of the HyperBF using randomly
distributed timelines is80:07%, while that of the HyeprBF
using evenly distributed timelines is81:95%.

V. EXPERIMENTAL RESULTS

We conduct extensive experiments to validate the effective-
ness of HyperCalm and its bene�ts to real-world applications.
Our experiments focus on the following �ve key issues.
� Can HyperBF accurately and ef�ciently detect item

batches?We compare the performance of HyperBF with
state-of-the-art Clock-Sketch [1], SWAMP [24], and Time-
Out Bloom �lter (TOBF) [23] in �nding item batches. The
results show that under the same memory usage, HyperBF
always achieves higher accuracy and faster speed than state-
of-the-art solutions. (x V-B)

� Can CalmSS accurately and ef�ciently detect top-k
items?We compare the performance of CalmSS with state-
of-the-art Space-Saving (SS) [11], Unbiased Space-Saving
(USS) [12], and Cold �lter [16] + Space-Saving (CF+SS) in
�nding top-k items. The results show that under the same
memory usage, HyperBF always achieves higher accuracy
and faster speed than state-of-the-art solutions. (x V-C)

� Can HyperCalm accurately and ef�ciently detect top-
k periodic batches? We combine the state-of-the-art al-
gorithms in detecting batches and �nding top-k items to
form one strawman solution for �nding periodic batches,
and compare HyperClam against it. The results show that
HyperCalm outperforms the strawman solutions 4� in term
of average relative error and 13.2� in term of speed. (x V-D)

� Is it bene�cial for real-world application to detect
periodic batches? We apply the HyperCalm sketch to a
cache system, and use the measurement results of periodic
batches to optimize the replacement and prefetch strategies.
The results show that HyperCalm improves the hit rates of
both LFU and LRU caches. (x V-E)

� Can HyperCalm work well in distributed systems? We
implement HyperCalm on top of Apache Flink [22], show-
ing that our solution can be easily integrated into modern
stream processing framework and work well in distributed
environment. (x V-F)

A. Experimental Setup
Platform and setting: We conduct experiments on an 18-
core 4.2GHz CPU server (Intel i9-10980XE) with 128GB
3200MHz DDR4 memory and 24.75MB L3 cache. We im-
plement all codes with C++ and build them with g++ 7.5.0
(Ubuntu 7.5.0-6ubuntu2) and -O3 option. The hash functions
we use are 32-bit Murmur Hash [50]. We use SIMD (Single
Instruction and Multiple Data) to accelerate the cleaning pro-
cess of HyperBF. By default, the parameters of the comparing
algorithms are set according to the recommendation of their
authors. We �rst �nd the ground-truth batches / top-k items /
periodic batches according to prede�ned parameters, and store
them as golden labels in a large hash table.

(a) F1 score. (b) Cell line size (l). (c) Number of Arrays (d). (d) Timeline distribution. (e) Processing speed.
Fig. 10: Performance of HyperBF (CAIDA).

Datasets:
1) CAIDA dataset: CAIDA [49] is a data stream of IP trace
collected in 2018. Each item is identi�ed by its source IP (4
bytes) and destination IP (4 bytes).
2) Criteo dataset: Criteo [51] is an advertising click data
stream consisting of about 45M ad impressions. Each item is
identi�ed by its categorical feature and conversion feedback.
Evaluation Metrics:
1) Recall Rate (RR): The ratio of the number of correctly
reported instances to the number of correct instances.
2) Precision Rate (PR):The ratio of the number of correctly
reported instances to the number of reported instances.
3) F1 Score: 2� RR � P R

RR + P R .

4) Average Relative Error (ARE): 1
j 	 j

P
ei 2 	

�
�
� f i � f̂ i

�
�
� =f i ,

where f i is the real frequency of itemei ; bf i is its estimated
frequency, and	 is the query set.
5) Throughput (Mops): Million operations per second.

B. Experiments on HyperBF

Parameter setting:We compare HyperBF with Clock-Sketch
[1], SWAMP [24], and Time-Out Bloom �lter (TOBF) [23].
For HyperBF, we setd = 8 andl = 32 by default. For CAIDA,
we set the time-based batch thresholdT to 0:72 seconds. For
Criteo, we set the count-based batch thresholdT to 40,000.
Under such settings, there are about 0.96M batches in CAIDA
dataset, and about 4.9M batches in Criteo dataset.
Accuracy of detecting batches (Figure 10a): We �nd
that HyperBF always achieves the best accuracy.In fact,
HyperBF, Clock, and TOBF always have100% PR, but Hy-
perBF achieves better RR than Clock and SWAMP. SWAMP
always has100% RR because it reports all unrecorded items
as batches, but its PR is less than40% as it suffers high
false positive errors. When using 256KB of memory, Hy-
perBF achieves97%F1 score, signi�cantly outperforms Clock
(90%), SWAMP (28%), and TOBF (73%).
Impact of cell line size (l) (Figure 10b): We �nd that a
larger value of cell line sizel goes with higher RR of HyperBF,
and when the cell line size exceeds 8, HyperBF achieves
the optimal accuracy. When settingl = 2 and using more
than 256KB of memory, the RR of HyperBF decreases as the
memory usage increases because the outdated cells are not
cleaned in time. The two curves ofl = 8 and l = 16 are
highly in coincidence, meaning thatl = 8 is already enough
to achieve the optimal accuracy.
Impact of number of arrays (d) (Figure 10c): We �nd that
HyperBF performs well when usingd = 4 or d = 8 arrays.

When the memory usage is small, smallerd goes with higher
RR. This is because when the total memory usage is �xed,
smallerd leads to larger size of each array, and thus leads to
less hash collisions in each array. When the memory usage is
large, largerd goes with higher Recall Rate. This is because
if the array size is too small, the outdated cells cannot be
cleaned in time, which compromises the accuracy of HyperBF.
When settingd = 8 and using 256KB of memory, the RR of
HyperBF exceeds95%.
Impact of Asynchronous Timeline(Figure 10d): We �nd
that the Asynchronous Timelinetechnique can signi�cantly
improve the RR of HyperBF.Here, theAsynchronous Timeline
technique usesd evenly distributed timelines. When using
256KB of memory, HyperBF usingAsynchronous Timeline
achieves97% RR, signi�cantly outperforms that of the basic
version (82%).
Processing speed (Figure 10e):We �nd that HyperBF is
faster than other algorithms.The results show that under
different memory constraints, the throughput of HyperBF is
always 16 Mops, while that of TOBF and SWAMP are about
14 Mops and 9 Mops, respectively. The throughput of Clock
drops rapidly with the increase of memory usage because
when using more memory, Clock needs to clean more cells
per insertion. When using 1024KB of memory, the throughput
of Clock is only a half of that of HyperBF.

C. Experiments on CalmSS

Parameter setting: We compare CalmSS with Space-Saving
(SS) [11], Unbiased Space-Saving (USS) [12], and Cold �lter
[16] + Space-Saving (CF+SS). For CalmSS, we setw = 16
and P = 4 by default. We setk = 100 and conduct the
experiments using CAIDA.
Accuracy of �nding top- k items (Figure 11a):We �nd that
CalmSS always has better RR than SS, USS, and CF+SS.
The RR of CalmSS reaches78% even if the memory size
is only 32KB, while that of SS and USS are about50%. As
the memory size exceeds 128KB, the RR of CalmSS is very
close to100%. The RR of CF+SS is smaller than ours because
the large volume of data stream �ll it up very quickly.
Frequency estimation for top-k items (Figure 11b):We �nd
that CalmSS always achieves smaller ARE than SS, USS, and
CF+SS. When using 32KB of memory, the ARE of CalmSS
is 0:1, about 4 times lower than that of the other algorithms.
When using 512KB of memory, the ARE of CalmSS is7:5�
10� 4, while that of SS, USS, CF+SS are1:8 � 10� 3, 1:1 �
10� 3, and2:1 � 10� 2, respectively.

(a) Recall. (b) ARE. (c) Processing speed. (d) Queue length (w). (e) Promotion thld. (P).
Fig. 11: Performance of CalmSS (CAIDA).

(a) Recall (CAIDA). (b) Recall (Criteo). (c) ARE (CAIDA). (d) ARE (Criteo). (e) Speed (CAIDA).
Fig. 12: Performance of HyperCalm (CAIDA and Criteo).

Processing speed (Figure 11c): We �nd that CalmSS is
faster than SS, USS, and CF+SS.CF+SS is slow because
Cold �lter needs extra memory accesses and hash computation.
Surprisingly, CalmSS is faster than SS and USS because
it sends only hot items to Space-Saving, resulting in fewer
memory accesses to Space-Saving data structure. The LRU
queue is small enough to be held in caches, and thus does not
incur extra memory access.
Impact of LRU queue length (w) (Figure 11d): We �nd that
CalmSS performs well when the length of the LRU queuew is
just 8. When using 256KB memory, the RR of CalmSS using
an LRU queue of lengthw = 8 is 91%, while that of Space-
Saving (w = 0) is 77%. Since the three curves ofw = 8 ,
w = 16, andw = 32 are highly in coincidence, we conclude
that w = 8 is enough to achieve satisfactory accuracy.
Impact of promotion threshold(P) (Figure 11e): We �nd
that the optimal promotion thresholdP is 4 or 6. When using
256KB memory, the RR of CalmSS withP = 2 or P = 4 is
about92%, while that of Space-Saving (P = 0) is 76%. Note
that the optimalP is highly correlated with the dataset.

D. Experiments on HyperCalm

Parameter setting: We combine the state-of-the-art Clock-
Sketch and Unbiased Space-Saving to form a strawman so-
lution for �nding top-k periodic batches (Clock+USS), and
compare our HyperCalm with it. The parameters (including
memory proportion) of HyperCalm and the strawman solution
are empirically set so that they achieve relatively good perfor-
mance. For HyperBF, we setd = 8 andl = 32 by default. For
CalmSS, we setP = 7 .
1) Setting on CAIDA: We set the time-based batch threshold
T to 0.072 millisecond. Each batch intervalV is rounded to
the nearest multiple of 0.72 millisecond. Under such settings,
there are about 4.1M periodic batches in CAIDA dataset.
2) Setting on Criteo: We set the count-based batch threshold
T to 20,000. Each batch intervalV is rounded to the nearest
multiple of 100,000. Under such settings, there are about
14.7M periodic batches in Criteo dataset.

Accuracy of �nding periodic batches (Figure 12a-12b):
We �nd that the RR of HyperCalm always outperforms the
strawman solution on two datasets.On CAIDA, when using
60KB of memory, the RR of HyperCalm is94%, while that of
the strawman solution is78%. On Criteo, when using 800KB
of memory, the RR of HyperCalm is90%, while that of the
strawman solution is85%.
Frequency estimation of periodic batches (Figure 12c-12d):
We �nd that HyperCalm always has smaller ARE than the
strawman solution on two datasets.On CAIDA, when using
60KB of memory, the ARE of HyperCalm is about6:9� 10� 3,
which is4 times lower than that of the strawman solution. On
Criteo, when using 800KB of memory, the ARE of HyperCalm
is about1:3 � 10� 4, which is4:6 times lower than that of the
strawman solution.
Processing speed (Figure 12e):We �nd that the processing
speed of HyperCalm always outperforms the strawman so-
lution on two datasets. On CAIDA, when using 60KB of
memory, the throughput of HyperCalm is10:2 Mops, which is
13:2 times higher than that of the strawman solution. The gap
between HyperCalm and Clock+USS is huge because Clock
needs to clean many cells per insertion, which harms the speed.

(a) Recall (CAIDA). (b) ARE (CAIDA).

Fig. 13: Impact of TimeRecorder queue length (c).

Impact of the length of TimeRecorder (c) (Figure 13):
We �nd that as the length of the TimeRecorder queue grows
larger, the accuracy of HyperClam increases.We also �nd
that HyperClam performs well when the TimeRecorder queue
length c = 1024. As shown in Figure 13a, under 80KB
of memory, when TimeRecorder queue lengthc is 1024,
HyperClam achieves97%RR. As shown in Figure 13b, under

	Introduction
	Background and Motivation
	Our Proposed Solution
	Key Contributions

	Background and Related Work
	Problem Statement
	Related Work

	The HyperCalm Sketch
	The HyperBF Algorithm
	The TimeRecoder Algorithm
	The CalmSS Algorithm
	Implementation

	Mathematical Analysis
	Error rate of HyperBF
	Error rate of CalmSS
	Effectiveness of Asynchronous Timeline

	Experimental Results
	Experimental Setup
	Experiments on HyperBF
	Experiments on CalmSS
	Experiments on HyperCalm
	Applying HyperCalm to Cache Systems
	Integration into Apache Flink

	Conclusion
	References

