HyperCalm Sketch: One-Pass Mining Periodic
Batches in Data Streams

Zirui Liuf, Chaozhe Kong', Kaicheng Yang', Tong Yang'*, Ruijie Miaof,
Qizhi Chen', Yikai Zhao, Yaofeng Tuf, and Bin Cuif
School of Computer Science, and National Engineering Laboratory for Big Data Analysis Technology and Application,
Peking University, Beijing, China iPeng Cheng Laboratory, Shenzhen, China SZTE Corporation
{zirui.liu, kcz, ykc, miaoruijie, hzyoi, zyk, bin.cui} @pku.edu.cn, {yangtongemail} @ gmail.com, {tu.yaofeng}@zte.com.cn

Abstract—Batch is an important pattern in data streams, which
refers to a group of identical items that arrive closely. We find
that some special batches that arrive periodically are of great
value. In this paper, we formally define a new pattern, namely
periodic batches. A group of periodic batches refers to several
batches of the same item, where these batches arrive periodically.
Studying periodic batches is important in many applications, such
as caches, financial markets, online advertisements, networks,
etc. We propose a one-pass sketching algorithm, namely the
HyperCalm sketch, which takes two phases to detect periodic
batches in real time. In phase 1, we propose a time-aware
Bloom filter, namely HyperBloomFilter (HyperBF), to detect the
start of batches. In phase 2, we propose an enhanced top-k
algorithm, called Calm Space-Saving (CalmSS), to report top-
k periodic batches. We theoretically derive the error bounds for
HyperBF and CalmSS. Extensive experiments show HyperCalm
outperforms the strawman solutions 4x in term of average
relative error and 13.2x in term of speed. We also apply
HyperCalm to a cache system and integrate HyperCalm into
Apache Flink. All related codes are open-sourced.

Index Terms—Data Stream, Sketch, Periodic Batch

I. INTRODUCTION

A. Background and Motivation

Batch is an important pattern in data streams [[1]], which is
a group of identical items that arrive closely. Two adjacent
batches of the same item are spaced by a minimum interval
T, where T is a predefined threshold. Although batches can
make a difference in various applications, such as cache [1]],
networks [2], and machine learning [3], [4], it is not enough
to just study batches. For instance, in cache systems, with
just the measurement results of batches, we are still not able
to devise any prefetching method and replacement policy.
Further mining some special patterns of batches is of great
importance. On the basis of batches, we propose a new pattern,
namely periodic batch. A group of periodic batches refers to
« consecutive batches of the same item, where these batches
arrive periodically. We call « the periodicity. Finding top-
k periodic batches refers to reporting k groups of periodic
batches with the k largest periodicities.

Studying top-k periodic batches is important in practice. For
example, consider a cache stream formed by many memory
access requests where each request is an item, periodic batches
provide insights to improve the cache hit rate. With the

Co-primary authors: Zirui Liu, Chaozhe Kong, and Kaicheng Yang. Corre-
sponding author: Tong Yang (yangtongemail @gmail.com).

historical information of periodic batches, we can forecast
the arrival time of new batches, and prefetch the item into
cache just before its arrival. For another example, in financial
transaction streams, periodic transaction batches could be an
indicator of illegal market manipulation [S]. By detecting
periodic batches in real time, we can quickly find those
suspicious clients that might be laundering money. Periodic
batches are also helpful in recommendation systems and
online advertisements, where the data stream is generated
when users click or purchase different commodities. A batch
forms when users continuously click or purchase the same
type of commodities. In this scenario, periodic batches imply
users’ seasonal and periodic browsing or buying behaviors [6]]
(e.g., Christmas buying patterns that repeat yearly, or seasonal
promotion-related user behaviors). Studying periodic batches
can help us to better understand customer behavior, so that we
can deliver appropriate advertisements promptly to customers.
In addition, periodic batches are also important in networks.
In network stream, most TCP senders tend to send packets
in periodic batches [7]. If we can forecast the arrival time
of future batches, we can pre-allocate resources to them, or
devise better strategies for load balancing. To our knowledge,
there is no existing work studying periodic batches, and we
are the first to formulate and address this problem.

Finding periodic batches is a challenging issue. First, finding
batches is already a challenging issue. Until now, the state-of-
the-art solution to detect batches is Clock-Sketch [1], which
records the last arrival time of recent items in a cyclic array,
and uses another thread to clean the outdated information using
CLOCK [8] algorithm. However, to achieve high accuracy, it
needs to scan the cyclic array very fast, which consumes a
lot of CPU resources. Second, periodic batch is a more fine-
grained definition, and thus finding periodic batches is more
challenging than just finding batches. The goal of this paper
is to design a compact sketch algorithm that can accurately
find periodic batches with small space- and time- overhead.

B. Our Proposed Solution

To accurately detect periodic batches in real time, we
propose a one-pass sketching algorithm, namely HyperCalm.
HyperCalm takes two phases to find top-k periodic batches. In
phase 1, for each item e arriving at time ¢, we check whether
it is the start of a batch. If so, we query a TimeRecorder

queue to get the arrival time ' of the last batch of e, and
calculate the batch interval V' = t — £ Then we send
this batch and its interval (e,V) to the second phase. In
phase 2, we check periodicity and manage to record top-
k periodic batches, i.e., top-k (e, V) pairs. In phase 1, we
devise a better algorithm than the state-of-the-art algorithm for
detecting batches, Clock-Sketch [[L]. In phase 2, we propose an
enhanced top-k algorithm, which naturally suits our periodic
batch detection scenario.

In phase 1, we propose a time-aware version of Bloom
filter, namely HyperBloomFilter (HyperBF for short), to detect
batches. For each incoming item, phase 1 should report
whether the item is the start of a batch. In other words, this
is an existence detection algorithm. In addition to existence
detection, phase 1 should be aware of arrival time to divide
a series of the same item into many batches. Bloom filter [9]
is the most well-known memory-efficient data structure used
for existence detection. However, the existence detection of
Bloom filter is only low-dimensional, i.e., it is agnostic to time
dimension. Typical work aware of time dimension is Persistent
Bloom filter (PBF) [10]]. It is an elegant variant of Bloom
filter, which uses a set of carefully constructed Bloom filters
to support membership testing for temporal queries (MTTQ)
(e.g., has a person visited a website between 8:30pm and
8:40pm?). MTTQ and batch detection are different ways to
be aware of time dimension. To enable Bloom filter to be
aware of time, our HyperBF extends each bit in Bloom filter
into a 2-bit cell, doubling the memory usage. Compared to
the standard Bloom filter, HyperBF has the same number of
hash computations and memory accesses for each insertion
and query. The only overhead for time awareness is doubling
the memory usage, which is reasonable and acceptable.

In phase 2, we propose an enhanced top-k algorithm,
called Calm Space-Saving (CalmSS for short), to report top-k
periodic batches. For each incoming batch and its interval, i.e.,
(e, V'), phase 2 should keep periodic batches with large peri-
odicities, and evict periodic batches with small periodicities.
In other words, phase 2 keeps frequent (e, V') pairs, and evicts
infrequent (e, V') pairs, which is is a top-k algorithm. Typical
top-k algorithms include Space-Saving [11]], Unbiased Space-
Saving [12], and Frequent [13]. However, their accuracy is
significantly harmed by cold items [H This problem is more
serious in our scenario of periodic batch detection. This is
because one infrequent item may have multiple batches, and
one frequent item may also have multiple batches without
periodicity. Both the two cases above increase the number of
cold (e, V) pairs. To identify and discard cold items, Cold
Filter [16] and LogLogFilter [[17] record the frequencies of all
items in a compact data structure. However, considering the
large volume of data stream, this structure will be filled up very
quickly, and needs to be cleaned up periodically. To ensure the
one-pass property of our solution, it is highly desired to devise
a data structure which will never be filled up. Instead of record-

1Cold items refer to items with small frequencies (i.e., infrequent items),
and hot items refer to items with large frequencies (i.e., frequent items). In
practice, most items are cold items, which appear just several times [14]], [15]

ing all items, our solution is to just record the frequencies
of some items in the sliding window, and discard those cold
items in the sliding window. Rather than using existing sliding
window algorithms [[18]], [19], [20], this paper designs an LRU
queue working together with Space-Saving because of the
following reasons. First, our LRU queue is elastic: users can
dynamically tune its memory usage to maintain a satisfactory
accuracy. Second, our LRU queue has elegant theoretical
guarantees (see details in § [[lI-C). Third, our LRU queue can
be naturally integrated into the data structure of Space-Saving
(see details in § [II-D): such combination achieves higher
accuracy and higher speed. Our combination is faster because
the LRU queue efficiently filters most cold items, and thus
the complicated replacement operations incurred by cold items
are avoided (see Figure [I[1c). Actually, besides the application
of periodic batch detection, our LRU queue can improve the
accuracy/speed of any streaming algorithms. We can handle
any case that Cold filter can handle, and we are both time-
and space- more efficient than Cold filter (§ [V-C). All related
codes are open-sourced [21]].

C. Key Contributions

We formulate the problem of finding periodic batches in
data streams. We believe this is an important problem in
data mining.

We propose an accurate, fast, and memory efficient Hyper-
Calm sketch to detect periodic batches in real time. Both
the two components of HyperCalm, HyperBF and CalmSS,
significantly outperform the state-of-the-art solutions in de-
tecting batches and finding top-k items, respectively.

We derive theoretical guarantees for our HyperBF and
CalmSS, and validate our theories using experiments.

We conduct extensive experiments showing that HyperCalm
well achieves our design goal. The results show HyperCalm
outperforms the strawman solutions 4 in term of average
relative error and 13.2x in term of processing speed.

We apply HyperCalm to a cache system showing that peri-
odic batches can benefit real-world application. We integrate
HyperCalm into Apache Flink [22]] showing that HyperCalm
can smoothly work in distributed systems.

II. BACKGROUND AND RELATED WORK

A. Problem Statement

Batches: A data stream is an infinite sequence of items where
each item is associated with a timestamp. A batch is defined
as a group of identical items in the data stream, where the
time gap between two adjacent batches of the same item must
exceed a predefined threshold 7. For convenience, in this
paper, two adjacent batches mean two batches belong to the
same item by default. The arrival time of a batch is defined
as the timestamp of the first item of this batch. We define the
interval/time gap between two adjacent batches as the interval
between their arrival times.

Periodic batches: A group of periodic batches refers to «
consecutive batches of the same item, where these batches
arrive with a fixed time interval. We call o the periodicity.

Here, the “ xed time interval” is not the exact time, but the apsketches include CM [25], CU [26], Count [27], and more
proximate (noise-tolerant) time rounded up to the nearest tif&8], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38].

unit (e.g, one millisecond). Finding tog- periodic batches However, sketches are memory inef cient because they record
refers to reportingk groups of periodic batches with tHe the frequencies of all items, which is actually unnecessjry.
largest periodicities. Note that one item may have more th&V tables record only the frequent items. Typical KV table
one group of periodic batches, and thus can be reported mbesed approaches include Space-Saving [11], Unbiased Space-
than once. Saving [12], Frequent [13], and more [39], [40]. Space-Saving
Example (Figure 1): We present an example to further clariffand Unbiased Space-Saving record the approximatek top-
our problem de nition. We focus on two kinds of distinct itemdtems in a data structure called Stream-Summary. However,
e; and e, in the data stream. Fag, its 6 batches form a their accuracy is signi cantly degraded by cold items. To
group of periodic batches. Fey, it has two groups of periodic address this issue, Cold Filter [16] uses a two-layer CU sketch
batches, with the periodicities @f and 5, respectively. Note to lter cold items. However, as aforementioned, the structure
that some batches @& just have one item. of Cold Filter will be lled up very quickly. Cleaning the

full Cold Filter will inevitably incur error and time overhead,
which is still not addressed.

Mining periodic patterns: Although there have been some
algorithms aiming at mining periodicity in time sequence
data [41], [42], [43], [44], [45], [46], [47], their problem
de nitions are different from ours. More importantly, most
of them do not meet the requirements of data stream model
processing: 1) each item can only be processed once; 2) the
processing time of each item should ©¢1) complexity and

fast enough to catch up with the high speed of data streams.
Discussion: The de nition of periodic batches is a designFor example, TiCom [44] de nes a periodical problem in an
choice related to nal application. We think our de nition ofincomplete sequence data, and develops an iterative algorithm
periodic batches is most general, which can bene t many realith time complexity ofO(n?). RobustPeriod [42] proposes
world applications (see V-E as an example). However, certairfn algorithm based on discrete wavelet transform with time
application may also care about other aspects of periogiemplexity of O(nlogn). Further, there are some works
batches, such as batch size and distance. For example, swfigh elegantly use Fast Fourier Transform (FFT) or Auto
application may just want to detect those periodic batch&€®rrelation Function (ACF) to address different de nitions of
that are large enough in size. It is not hard to detect thoBeriodic items, such as SAZED [45]. These algorithms need
variants of periodic batches by adding small modi catiofio process one item multiple times, and thus cannot meet the
to our solution. Further formulating more application-speci @bove two requirements.

Fig. 1: Example of periodic batches.

variants of periodic batches is our future work. TABLE I: Symbols frequently used in this paper.
B. Related Work Symbol | Meaning
e ID of anitem in a data Stream
Related work is divided into three parts: 1) algorithms for T Batch threshold spacing two adjacent batches
batch detection; 2) algorithms for nding top-k frequent items; d Num_?her of arrays in HyperBF
and 3) algorithms for mining periodic patterns. Bi Thei™ aray of HyperBF

. . . m Number of 2-bit cells in each arra;
Batch detection: Item batch is de ned very recently in [1], T Number of 2-bit cells in each block

which proposes Clock-Sketch to nd batches. Clock-Sketch — hi() Hash function mapping an item into a cell B
consists of an array of-bits cells. For each incoming item, v Time interval of two adjacent batches of an item
. S . c Length of the TimeRecorder queue

it sets thed hashed cells ag® 1. For query, if one of the ——— T An entry in phase 2, which is the concatenation bf
d hashed cells is zero, it reports a batch. Clock-Sketch usest = PVi | 4 iteme and its batch intervaV/, i.e, be; Vi

an extra thread to cyclically sweep the cell array at a constant W Length of the LRU queue in CalmSS

speed and decreases the swept non-zero cells by one. The—" Prede ned promotion threshold of the LRU queue
sweeping speed is carefully selected to avoid false-positive
errors. Besides Clock-Sketch, some sliding window algorithms
can be applied to nd batches, includingme-Out Bloom Overview (Figure 2): The work ow of the HyperCalm sketch
Filter (TOBF) [23] and SWAMP[24]. consists of two phased) A HyperBloomFilter (HyperBF)
Finding top-k frequent items: To nd top-k frequent items detecting the start of batches; a@)i A Calm Space-Saving

in data streams, existing approaches maintain a synopsis d&talmSS) recording and reporting tépperiodic batches. In
structure. There are two kinds of synopssketchesand KV addition, we design a TimeRecorder queue to record the last
tables 1) Sketches usually consist of multiple arrays, eadbatch arrival time for potential periodic batches. Given an
of which consists of multiple counters. These counters aircoming iteme arriving at timet, we rst propose HyperBF
used to record the frequencies of the inserted items. Typi¢alcheck whether it is the start of a batch. If so, we query the

IIl. THE HYPERCALM SKETCH

TimeRecorder queue to get the arrival tifhef the last batch with a hash functiorh; () that maps an item into a cell in it.

of e and calculate the batch intervel = t f. 2 Then we As mentioned above, HyperBF divides the timeline into three

update the arrival time of last batch efin the TimeRecorder kinds of time slices (1 3). Each cell stores a time slice (B)

gueue tot. Next, we sende and its batch intervaV to or a zero ag (). We preserve the zero value of cells as the

CalmSS to detect tok-periodic batches. We combine the IDbatch ag: once an incoming is mapped into a cell with batch

of item e and its intervalV to form anentry E = he;Vi, ag, a new batch starts. For example in Figure 3, HyperBF

and insert the entry into CalmSS. CalmSS repkrtgoups of has?2 cell arrays, each of which hak 2-bit cells which are

periodic batches with th& largest periodicitiesi.e., reports divided into 2 blocks. For simplicity, each block has 2

topk entries with thek largest frequencies, where each entrgells here. In practice, we can set thieck size to any value

is an he; Vi pair. We use a hash table index to accelerat® more than 64BI(6 256), i.e., no more than the cache line

the lookup process of the TimeRecoder queue and CalmS&ge. All cells are initialized to 0.

achieving O(1) processing time complexity (see more detallssert: For each incoming itene with timestampt, we rst

in x 1I-B and x IlI-C). The main symbols used in this papercalculate the current time slice = bTLc mod 3 + 1. We

are listed in Table I. calculate thal hash functions to locate thithashed cell®f e:
Bi[hi(€)]; ; Ba[hg(€)]. For each hashed cell, we check the
block which the cell resides, and incidentally cleautdated
cellsto zero ag. Speci cally, if the current time slice i§,
time slice 2 is outdated; if the current time slice B time
slice 3 is outdated; if the current time slice & time slice
1 is outdated. Due to the high speed of the data stream, all
outdated cells will be cleaned in time (see theoretical results
in x 1V). After cleaning, if any one of tha hashed cells is
zero ag, HyperBF reports the start of a batch. Finally, we
update alld hashed cells to the current time slise

Fig. 2: HyperCalm sketch work ow.

A. The HyperBF Algorithm

Rationale: To enable Bloom lter to be time-aware, the key

technique of HyperBF is to extend every bit in Bloom lIter

into a 2-bit cell, and use these cells to compactly record the

approximate last arrival time of recent items. Although we can

also use 3-bit or 4-bit cells, we nd that under xed memory,

using 2-bit cells achieves the best accuracy. Since 2-bit ceffig- 3: Two examples of HyperBRI(=2, m =4, | = 2).

can represent 4 states (8), HyperBF cyclically divides the Example 1 (left of Figure 3): For iteme; arriving at time
timeline into three kinds of time slices (B), and the length of ;e Snow =1, we rst locate its two hashed celB;[2] and
each tilme slice i§,wher_eT is Fhe prede necbatch threshol_d B,[3] by caICt'JIatinghl(el) and hp(e1). Next, we clean the
(see Figure 4a). These time slices are recorded in thg 2'b't,0%|fr°tdated cells with valu@. For B1[2], we check all cells in

of HyperBF. HyperBF needs to clean all outdated time slicgg pjock (.e, B1[1] and B1[2]), and clean the outdated cell
ef ciently. Rather than using an extra thread like CIock-Sketcgl[ll to zera For B,[3], we clean the outdated cel,[3] to

[1], HyperBF inc_identally cleans the outdated cells during each.q " After cleaning, since the second hashed &[3] is
insertion operation. Compared with standard Bloom lter, Hyierq we report the start of a batch. Finally, we update the two
perBF has the same number of hash computations and memat¥haq cells 0w -

accesses for each insertion and query. Further, we Propose@mple 2 (right of Figure 3): For iteme, arriving at time
novel Asynchronous Timelingchnique to signi cantly reduce ;o Snow =2, We rst locate its two hashed celB;[3] and

the error of HyperBF. Theoretical guarantees of HyperBF 8 141 ‘Next, we check the blocks which the two hashed cells
provided inx V. . reside, and clean the outdated cells with vaB,e.e., clean
Data structure: HyperBF consists ofl arraysBs; 5 Bd. g 4] to zero. Since after cleaning, both the two hashed cells
Each a”_a)’Bi hz?\sm 2-bits Ce"SB‘ [11) :Bi[m], which are notzerg we do not report a batch. Finally, we upd&g3]
evenly divided into blocks with| 2-bit cells. Each block and B, [4] t0 Snow -

can t into the size of a cache line, and thus could be read Bhror analysis: HyperBF might miss some batches, but

write through one memory access. When checking one Ce”’Wl% reported batches are always true. The error of missing

can incidentally access the other cells in its block, which doﬁﬁtches comes from three aspedtsThe error incurred by
not incur extra memory accesses. Each aBays associated p,,qp colision, which is the cause of false positive error of

2To tolerate noise in batch interval, in our experimesjs rounded up Bloom Iters._2) The error 'ncurre_d by outdated cells tha.t are
according to the regulations described in the parameter setting pai-@f. not cleaned in time3) The error incurred by coarse-grained

timeline division. We provide the theoretical analysis of th€inally, we update the timestamp @&fto the current time
three kinds of error inx IV, proving that the impact of the t. 2) If not, we inserte into the TimeRecorder queue, and
rst two kinds of error are negligible. For the third error,store the arrival tima of its last batch inindex_1 . If the
essentially, our 2-bit time slice is a coarse-grained timelineBmeRecorder queue is already full before insertion, we evict
division: the gain is extremely high memory ef ciency, and thé¢he oldest (least recently accessed) itejito make room for
cost is the fuzzy perception of time. Fortunately, we found the Note that ifey has periodic batches.€., it is maintained in
error incurred by fuzzy perception of time can be signi cantlfCalmSS), we still preserve the arrival time of its last batch in
reduced by the technique éfsynchronous Timeline Index_1 . For the implementation details, please gd#-D.
Asynchronous Timeline: HyperBF perceives time in a fuzzy Our TimeRecorder evicts the following itemky Items that
way. When the interval between two adjacent batches is amarg old and do not show periodicity; ar®) Items whose

T 2T, HyperBF might not be able to report the secontatches have long periods, which have little potential to
batch correctly, depending on the relative offset of the timelinbecome togk periodic batches. The TimeRecorder keeps the
Speci cally, only when the interval span three time slices caitems that are highly likely to have tdpperiodic batches, and
HyperBF be able to report the second batch. This issuediscard other items which are the major part of the data stream.
illustrated in Figure 4a. Although the time interval between thEherefore, our TimeRecoder queue is much more memory
two occurrences oé&; exceedsl, HyperBF cannot correctly ef cient than the above strawman solution.

divide them into two batches because the interval span just
two time slices. Therefore, when the current time slicd,is
time slice3 is not outdated. To address this issue, we propose
the Asynchronous Timelineechnique. Our key idea is to ude
different timeline offsets for thd arrays to enhance the ability

of batch perception. In this way, as long as the interval spans
three time slices in any one of tletimelines, HyperBF can
perceive the second batch correctly. As shown in Figure 4b,
after using theAsynchronous Timelineechnique, the interval
spans three time slices in the second array. In this example,
HyperBF can correctly perceive the second batch. We derive
theoretical guarantees férsynchronous Timelinesing linear
programming model in Theorem IV.3 inlV, proving that the The caimss Algorithm
time division error can be reduced loytimes when usingd
evenly distributed timelines.

(a) Data structure. (b) Insertion work ow.
Fig. 5: Data structure and work ow of CalmSS.

Rationale: Phase 2 uses a tdp-algorithm to report togk
periodic batches. The most well-known tkpalgorithm is
Space-Saving [11], which works by maintaining a Min-Heap
of m bins. For each incoming entiig,3, if it is in the heap, it
increments its counter by one; otherwise, it updates one of the
smallest binSE min ; fmin) 10 (E1;fmin +1). In this way, each

~(a) Synchronous. _ (b) Asynchronous. incoming entry increments a counter in Space-Saving. Recall
Fig. 4: Optimization usingAsynchronous Timeline that in phase 2, most entries are cold entries, which appear just
B. The TimeRecoder Algorithm several times. All increments by cold entries are unnecessary,

. . and signi cantly increase the overestimation error. Therefore,
To record the last arrival time of batches, a strawman S .)
we propose CalmSS to minimize the in uence of cold entries.

solution is to use a huge hash table to store the arrival tin.‘ll.%e key idea of CalmSS is to use a queue to discard cold

of the last batches for all items. This is memory inef cient, . L
because most batches are not periodic. To address this issénmes' The queue records the frequency of entries in the
' . sHSing window. This queue follows the LRU strategy: the

r - . .
those batches that are potential toperiodic batches. The?eas.t recgntly visited cold entry W'I.l be d|sc§1rded, and hot
entries will be moved to Space-Saving. Speci cally, for each

data structure of TimeRecorder is essentially a circular quede, | ina entrv. it is rst inserted into the queue: if it appears
which is implemented as a doubly linked list of nodes. g entry, queue. P

Each node records an item ID. We build the rst hash tabfé)o feV.V “”Tes _in the sliding window, it wil b_e discarded,
index (ndex_1) for TimeRecorder. For each itemin the Otherwise, it will be moved to the Space-Saving. ThRU

TimeRecorder queue, we store the arrival tifhef its last Queuecan be considered as a guardian of Space-Saving to
batch inindex 1 ' keep cold entries outside. We theoretically prove the error

i . . . bound of CalmSS ix IV.
For each incoming batch of itemat timet, we. rst query Data structure (Figure 5a): CalmSS consists of an LRU
Index_1 to check whether the arrival time of its last batch 9 '

is recorded1) If so, we calculate the batch intervll= t . 44€Y€ and a Space-Saving (it is essentially an Min-HeBjp):

Then we combine the it?m I® and its batch interval/ to 3Each entryE = he; Vi is the concatenation of an item I®and a batch
form an entryE = he;Vi, and send the entry to CalmSSintervalV.

The LRU queue uses a sliding window of bins to keep IV. MATHEMATICAL ANALYSIS

the recentw distinct entries. Each bin stores a key-value pair In this section, we provide a thorough theoretical support for
(E;f), where the key is an entry ID and the value is a smathe HyperCalm sketch, and validate our theoretical analyses
counter recording the frequency Bf. The LRU queue uses ausing experiments. Our theoretical analyses focus on the
prede ned thresholdP (called promotion threshold) to Iter following three key issues.

out cold entries: Once the counter of an enEyreaches How accurate can HyperBF detect batchesWe derive the

P, it means it is not a cold entry, and thus we remd¥e grror hound of HyperBF in Lemma IV.4 and Theorem IV.1,
from the LRU queue and insert it into the Space-Savitlg. and conduct experiments to validate our bound in Figure 7b.
The Space-Saving uses a Stream-Summary [11] and a hasfhe results show that both theoretical and experimental error
table to achieve O(1) time complexity to locate and update,gte are smaller tha®:01 in common cases.

the smallest entry. The hash table is used to index both thgqow accurate can CalmSS detect tofk periodic batches?
Stream-Summary and the LRU queue. Note that CalmSS isye derive the error bound of CalmSS in Theorem V.2, and
a meta-framework that accommodates any top-k algorithm,conduct experiments to validate our bound in Figure 8. The
which means the Space-Saving can be replaced by other top-kesuits show that both theoretical and experimental error rate
algorithm, such as Unbiased Space-Saving [12] and Frequerire smaller tha®:01 in common cases.

[48]. We use Space-Saving because it has the best theoreticid the Asynchronous Timeline technique of HyperBF
results. Similar to the TimeRecoder, we build the second andffective? We theoretically analyze the accuracy gain of
third hash table indicesiridex_2 and Index_3) for the Asynchronous Timelinechnique in Theorem IV.3, and con-
LRU queue and the Space-Saving, respectively. duct experiments to validate it in Figure 9b. Both theoretical
Insert (Figure 5b): For each incoming entrfg = he; Vi, and experimental results show thasynchronous Timeline
we rst query it in the hash indicest) If E is in the Space- technique signi cant improves the accuracy of HyperBF.
Saving, we just increment its counter by or®.If E is in

the LRU queue, we increment the small counteiofn the A- Error rate of HyperBF

LRU queue by one. After increment, if the small counter We rst prove the error rate of HyperBF in Theorem IV.1.
reaches the prede ned promotion thresh&ldwe removeE A data stream can be formulated by two variables: density
from the LRU queue and insefE; P) into the Space-Saving. and activity , where density is the number of distinct
Speci cally, if the Min-Heap is already full before insertingitems observed at each moment, and activitis the number

E, we update the smallest NOQE min ; fmin) in the Space- Of distinct items emerging/dying per unit time. Consider two
Saving to(E; f min + P). 3) If E is not in the LRU queue, we consecutive time interval; and T,. The numbers of distinct
insert(E; 1) into the LRU queue. If the LRU queue is alreadytems observed inf; and T, are + T, and + T,

full before insertingE, we evict the least recently accessefespectively. And the number of distinct items observed in
entry to make room foE . the two intervals is + (T, + T,). Most data streams can be

Report: To report topk periodic batches, CalmSS just reportéormulated by these two variables. Take CAIDA [49] dataset
thek entries with thek largest frequencies in the Min-Heap @S an instance, Figure 7a shows the average numbigstd)
Note that one item could have multiple groups of periodigf distinct items observed in time intervals of different length.
batches, and thus could be reported more than once. We can see that the linear relationship almost holds where
= 3195:2 and = 35238:9. Next, consider two adjacent
. occurrences of itene att; andt,, wheret, t; > 2T. Let
D. Implementation K = bl2zc blic.Let , = + nT denote the number of

In our implementation, we combine the three hash indic&éstinct items observed in a time interval of lengtf .
(Index_1 , Index_2 , andIndex_3) into one hash table
index Index_all . For each key-value pair in the hash table
Index_all , itincludes one key (item IDg and three values:
1) A timestampf, which is the arrival time of the last batch of
e; 2) Two entry listsList 1 andList_ 2 , which record the
corresponding entries of (they are essentially some batch
intervals of) that are in the LRU queue and the Space-
Sa\/ing (Min_Heap), respecti\/e|y_ Each node in the two entry As shown in Figure 6, consider two adjacent occurrences
lists uses a pointer to index the location of the LRU queue 6f an iteme in the data stream. Assume the timestamps of the
the Space-Saving) A counter recording the sum of severafwo occurrences arg andt;, respectively. Assumg, t; >
parts: the number of appearancesedh the TimeRecorder, 2T, meaning that the second occurrenceeaf the start of
and the lengths of the two lists. We delatrom the hash @ batch and there is ntime division error Next, we derive
table once its counter is decremented to zero. In this way, féye error rate of HyperBF, which is de ned as the probability
all items that have periodic batches, their last batch arrivéiat HyperBF does not report a batchtat
time is maintained inndex_all even if they are not in the ~ Now consider a certain hashed cBli[hi(e)] of item e. It
TimeRecorder queue. is obvious thatB;[h;(e)] is accessed bg at botht; andts.

Fig. 6: Error rate analysis of HyperBF.

Let to be the last time thaB; [h; (€)] was accessed befote. Proof. For each incoming itene, B;[h; ()] is cleaned if and

We havet; 6 to <t. In particular, ifto = t1, we can assert only if g is hashed into the same block but not the same cell
that there is no item hashed inBy[h; (e)] betweent; andtz. with e. Therefore, the probability thd; [h; (e)] is not cleaned
Assume thaIO 6 t; < T andKT 6 t, < (K +1)T, i.e, during the insertion o is1 1= .

K= 2 & . Sincet; andt, are two arbitrary selected [et x be the number of distinct items in the intervals,
timestamps, and the timeline can be arbitrarily specied;,: ;T,. According to the data stream assumption, we have
the above assumption does not impair generality. Next, we 6 x 6 u ;. Actually, when theu intervals are consecutive,
use symbolR; (0 6 i 6 K) to denote the time interval we havex = , and when theu intervals are disjoint

(K DT;(K+1 i)T). We restrict the range of possibleand separated far away enough from each other, we have

to into [T; (K +1) T). And we can assume thBt[hi(€)] can x = y ;. Since the probability tha; [hi(e)] is not cleaned
be cleaned by other items only j6; K T). in T1, ‘T, is 1 L~ e mv, we havePr(Q,)

mo u
Lemma IV.1. Let A° denote the event thay 6 (K +1 1 e m°.Thus,wehavd e 7°6 Pr(G)6 1 e wo. [

o- (K 1)T+tz
T Let] - Then we haves1 6 j < K, Lemma IV.4. Let P be the probability that a certain hashed

Pr A} e . cell of |teme (e g.,Bi[hi(e)]) is zero attp. Letm®= ™.
Proof. The probability thatB;[h;(e)] is not selected by a and uj = 3 letk; = & 1, Kp;= %1 1
certain hash function during the insertion of an itentis 1. and K3 = KTZ 1. Then the lower bound oP is
Note thatto 6 (K +1 j)T is equivalent to the statementp0= p2+ P9+ P2 whereP?= X! e S e
thatB;[hj ()] is not selected by any item that arrives between =~ P K, ake3 sk Uskes

(K +1 j)T andt,. From our data stream assumption, thE2 = k<o € T e 1 e »7 , and
number of distinct items arrives betweéd +1 j)T and Po= Ks o 2 o 22 41 ¢ Sake

tris jo= + (j K 1)T+ t,. Since the hash values k=0

of distinct items have no signi cant correlation between eadhroof. Now we discuss the possible range tgf Since our

other, then the probability th&; [h; (€)] is not selected by any goal is to derive the lower bound &, we can just ignore

of the ;o distinct items isPr A,O = 1 % LI the case wher& 2 Rk . And we note that whety 2 Rg or
0 to 2 Ry, Bi[hi(e)] cannot bezeroat t,. Therefore, we only

discuss the cases whefe6 to < (K 1)T, i.e, the cases
Lemma IV.2. For 80 6 j < K , let A? denote the event whereto 2 R; (26 j 6 K 1).

thatto 6 (K j+1)T, and IetAJ denote the event that First, consider the cases whetg 2 Rz (0 6 k 6
(K T6Lh<(K j+1)T, e, theeventthap 2 Rj. & 1) |n these cases[h;(e)] will be cleaned tozero

j j+1

Thenwe have thatf@16 j <K ,Pr(Aj)>e ™ e "m . hen inserting iteme at to. Let K1 3, & 1. We can
gerlve the rst part of P as Py = | Pr(Ass2) =
Proof. It is obvious that for806 j <K , we have 5= e - =PQ
Pr A° =Pr AJ i +Pr(A)) KSelcond, consider the cases whefe2 Ra+3 (06 k 6

)) S 1). As shown in Figure 6, whety 2 Rg, in order
According to Lemma IV.1, we have that f@16 j <K : g guarantee thaB;[h;(e)] = 0 at t,, Bi[ni(e)] must be

% cleaned at least once in time intervétg and R;. Generally,

— 0 -
PriA;)=pr :A\j(j ‘ TT +A:'2+1 © mT e whenty 2 R;, let u; denote the number of intervals in
=e~— —m 1 e ™ which B;j[h;(e)] should be cleaned at least once. Then we
o B haveu; = 12 . LetK, =, K.l 1. We can derive the
=em™ 1 em second part oP asP, = ﬁfo Pr(As:3)Pr G, >
Sincet, < (K +1) T, we have thatjo= + (j K K2 e %v" e “n- 1 e —g = P2,
DT+ ta< +jT= 5. Third, consider the cases whetg 2 Rass (0 6 k 6
Thus, we have K;2 1). These cases are similar to the cases in the second
Pr(Aj)= e £ 1 eT set 1 ew+ part, and the proof is also similar. N
s ey T ,- i In summary, we have th& = P1+ P+ P3 > P+ Pj+ Pj.
e m e m =—em e “m O

- Theorem IV.1. We de ne the error ratee of HyperBF (with-
Lemma IV.3. Letm®= ‘M. Givenu time intervals of length out Asynchronous Timeline) as the probability that HyperBF

T,T:; ;Tu, letG, denote the event that a certain cell, e.g.does not report a batch a,. Then we have:
Bi[hi (e)], is cleaned at least once in these time intervals. Then d
we have: E6 (1 P9

1 en*6Pr(G)61 e w whereP?is the lower bound in Lemma IV.4.

Proof. Note that HyperBF does not report a batchtatif Proof. Supposee fails to be discarded by the LRU queus,,

and only if all d hashed cellB;[hi(€)]; ;Bg[hq(€)] are it enters the togk algorithm. There must arrivesP times in a
zero at t,. Since thed arrays of HyperBF are independenshort time, and each arrival increments the countes iof the
of each other, we have th&t = (1 P)d, whereP is the LRU queue by one. Let random variablég; T; Tp 1

probability that one hashed cell meroat t,. Thus, we have be the time gaps between every two adjacent occurrences of
E6 (1 Po)d, whereP?is the lower bound oP derived in e. As e arrives according to a Poisson process of intensity
Lemma IV.4. This gives the proof of Theorem IV.1. [0 we haveT; follows an exponential distribution with mean.

. . . . Let D; denote the event that there arriwehot items within
Experimental analysis (Figure 7b):We conduct experiments . A .
.) .Ti. It is clear thatDq; ;Dp 1 are independent of each
on CAIDA [49] dataset to validate the theoretical bound in . . .
. other. Recall that the Poisson processes of different hot items
Lemma IV.4. We use the HyperBF that just has one arday (: - _
o are independent of each other. Let=n, and , = ..
1), and allocate 4KB of memory to itr{ = 16000). The results o . . LS
: . The probability of the event that there arrixédnot items within
show that the experimental error rate is always well bounded. b = ()] T
by theoretical bound. As the volume of CAIDA data strear;lu— IS Pt xt € :

is very large, almost all outdated cells in HyperBF can be 1hen we have:

cleaned promptly. Therefore, the experimental error rate does w1 w1 (LT)T
not vary withK. As K grows larger, our theoretical bound Pr(Dj) = Px1, = 17:(3 1Ti
becomes more accurate. Note that we only focus on a single x=0 x=0 x:

array of HyperBF here. If we use the HyperBF consisting of

d =8 arrays, the error rate will be 0:01. Recall that the Poisson processes of all distinct items are

independent of each other. Then we have:
!

Fy 1
=Bt 1o 19 Pr D;
i=1
Ry 1 R 1
:EfT]_J Tep 10 Pr(DI) = ETi [Pr(DI)]
i=1 i=1
(a) Data stream. (b) Error rate.
Fig. 7: Error rate of HyperBF. Further, we have:
B. Error rate of CalmSS R/ 1 iy 14 41 X
e — — (1t|) 2t
We de ne the error rate of CalmSS as the probability = Er, [Pr(Di)] = e it
that a cold item fails to be discarded by LRU queie,, i=1 i=1 x=0 ,0 '
the probability that a cold item enters the tolgorithm in X 19 RX FPl
CalmSS. Next, we derive the upper bound of = KR+ DL (x+1)
We assume the data stream consists of two types of items: x=0 "

cold items and hot items, and all items of the same typeh _
. . WwhereR =

have the same arrival speed. The data stream is essentially

the sum of many independent Poisson processes of two ki

= and (z) represents the Gamma function.]

rE%&)erimental analysis (Figure 8): We conduct experiments

(hot items anq cold items). Let, and ¢ be the parameters to validate our theoretical bound in Theorem IV.2. We set
of the two Poisson processes, respectively. iyetandne be w = 16, P = 4, and generate the data stream using two
the number of distinct hot items and cold items, respective%.ndS of’Poisson’processes where = 50 andn. = 1. The

. - c — .
Notpe thatny w aqdnc W. The're'fore', WE can assume,.qits show that the experimental error rate is always bounded
that in a short time interval, all arriving items are distinc y the theoretical upper bound. Note that when< 50
Consider a C.Old iteme, we assume all items that armvene intensity of cold items . is smaller than the intensity
between the time whea enters the LRU queue and the tlmemc hot items 5, meaning that cold items are actually not
whene is removed from the LRU queue are distimcit items. col Thereforé whenR s
Here, we assume all of these items are hot because we Want, ~., s nas large theoret-
to derive an upper bound of. Cold items only promote the ical a’nd experimental error. As

LRU queue to discard, resulting in a smaller. .
q 9 R increases, our data stream as-

Theorem IV.2. For a cold iteme, the probability that it fails sumption will be closer to truth.
to be discarded by CalmSS, i.e., the error rate of CalmSS,\W8§hen R > 50, . < 4,
I'p 1 meaning that the cold items are
Xt Rx ‘1 really cold. WherR = 125, the
- i x! (R +1)x+1 (x+1) theoretical error rate i§0 2 and Fig. 8: Error of CalmSS.
h the experimental error rate &0 4, showing that CalmSS is
whereR = ”“—Ch and (z) represents the Gamma function. highly effective in Itering cold items in real cases.

C. Effectiveness of Asynchronous Timeline usingd = 8 arrays, the RR of the basic HyperBFa$% while
Theorem IV.3. After using the Asynchronous Timeline techthat of the HyperBF usingAsynchronous Timelinés about
nique, the time division error is minimized when thémelines 80% Speci cally, the RR of the HyperBF using randomly
are evenly distributed, i.e., when the timeline offset forithe distributed timelines i80:07% while that of the HyeprBF
array is o = U 1T, where the minimized error is reducedusing evenly distributed timelines &1:95%

by d times compared to the synchronous version. V. EXPERIMENTAL RESULTS

Proof. The time division error occurs only when the batch We conduct extensive experiments to validate the effective-
interval spans two time slices in all of tligtimelines. Without ness of HyperCalm and its bene ts to real-world applications.
loss of generality, we take the rst timeline as the referena®ur experiments focus on the following ve key issues.

timeline,i.e, we seto; =0, and we suppose; <0z < < Can HyperBF accurately and efciently detect item
0g<T. ConS|der two batches arrives at timestampsand patches? We compare the performance of HyperBF with
(2 y)T respectively, wherec> 0,y > 0, andx +y < 1. giate-of-the-art Clock-Sketch [1], SWAMP [24], and Time-
The interval between the two batches i$=(2 'y X)T. oyt Bloom Iter (TOBF) [23] in nding item batches. The
Itis clear thatT < t< 2T. Consider the™ timeline with eqyits show that under the same memory usage, HyperBF

offseto 2 [0;T), it can correctly perceive the second batch if 4yays achieves higher accuracy and faster speed than state-
and only ifxT <oj and(2 y)T > T + o. In other words, f.the-art solutions. X V-B)

thei™ timeline can correctly perceive the second batch if the can caimss accurately and ef ciently detect topk
interval meets the above two constraints. items? We compare the performance of CalmSS with state-
Our goal is to nd the optimaloy; ;04 2 [0;T) 10 gfthe-art Space-Saving (SS) [11], Unbiased Space-Saving
perceive as much intervals as possible. Suppose the Va"‘éUSS) [12], and Cold lter [16] + Space-Saving (CF+SS) in
values ofx andy are uniformly distributed, the above problem nding top-k items. The results show that under the same
can be transformed into a linear programming problem. Asmemory usage, HyperBF always achieves higher accuracy

shown in Figure 9a,_the triangular area under theing/ = 1 and faster speed than state-of-the-art solutiond/-C)
represents the feasible rangexoindy. Leto = T where can HyperCalm accurately and ef ciently detect top-

i 2[0;1). Each timeline with offset; enables the intervals | periodic batches? We combine the state-of-the-art al-
lie in the rectangular area> 0,y > 0,x< j,andy < 1 gorithms in detecting batches and nding top-k items to

to be corr_ectly perceivgs._ Therefore, the goal_of t_he linearsorm one strawman solution for nding periodic batches,
programming is to maximize the total ar& which is the 434 compare HyperClam against it. The results show that
union of thed 1 rectangles. And we have: HyperCalm outperforms the strawman solutions i term
S= L1 D+ (3 2)(1)+(4 3)(1 4) of average relative error and 13.2n term of speed.xV-D)
+ +(4 ¢ 1)1 o) Is it benecial for real-world application to detect
periodic batches?We apply the HyperCalm sketch to a
By applying the method of Lagrange multipliers, we can cache system, and use the measurement results of periodic
easily derive thas is maximized when ; = {2 ie, o = batches to optimize the replacement and prefetch strategies.
%T, and the maximized is dd—l times of the triangular The results show that HyperCalm improves the hit rates of
area. Thusasynchronous timelineeduces the error bytimes. both LFU and LRU cachesx(V-E)

O Can HyperCalm work well in distributed systems? We
implement HyperCalm on top of Apache Flink [22], show-
ing that our solution can be easily integrated into modern
stream processing framework and work well in distributed
environment. X V-F)

A. Experimental Setup

Platform and setting: We conduct experiments on an 18-

core 4.2GHz CPU server (Intel i9-10980XE) with 128GB

(a) Linear programming. (b) Time division error. 3200MHz DDR4 memory and 24.75MB L3 cache. We im-
Fig. 9: Asynchronous Timeline analysis. plement all codes with C++ and build them with g++ 7.5.0

Experimental analysis (Figure 9b):We conduct experiments (Ubuntu 7.5.0-6ubuntu2) and -O3 option. The hash functions
on CAIDA [49] to validate Theorem IV.3. We set the batctwe use are 32-bit Murmur Hash [50]. We use SIMD (Single
thresholdT to 1.454 s, and x the memory usage of Hy- Instruction and Multiple Data) to accelerate the cleaning pro-
perBF to 50KB. We nd thatAsynchronous Timelinechnique cess of HyperBF. By default, the parameters of the comparing
signi cantly improves the accuracy of HyperBF. We also ndalgorithms are set according to the recommendation of their
that when usingAsynchronous TimelineHyperBF usingd authors. We rst nd the ground-truth batches / tépitems /
evenly distributed timelines is more accurate than HyperB#eriodic batches according to prede ned parameters, and store
using d randomly distributed timelines. For example, whethem as golden labels in a large hash table.

(a) F1 score. (b) Cell line size). (c) Number of Arraysq). (d) Timeline distribution. (e) Processing speed.
Fig. 10: Performance of HyperBF (CAIDA).

Datasets: When the memory usage is small, smallegoes with higher

1) CAIDA dataset: CAIDA [49] is a data stream of IP trace RR. This is because when the total memory usage is xed,
collected in 2018. Each item is identi ed by its source IP (4mallerd leads to larger size of each array, and thus leads to
bytes) and destination IP (4 bytes). less hash collisions in each array. When the memory usage is
2) Criteo dataset: Criteo [51] is an advertising click datalarge, largerd goes with higher Recall Rate. This is because
stream consisting of about 45M ad impressions. Each itemifisthe array size is too small, the outdated cells cannot be
identi ed by its categorical feature and conversion feedbackleaned in time, which compromises the accuracy of HyperBF.

Evaluation Metrics: When settingd = 8 and using 256KB of memory, the RR of
1) Recall Rate (RR): The ratio of the number of correctly HyperBF exceed95%
reported instances to the number of correct instances. Impact of Asynchronous Timeline(Figure 10d): We nd

2) Precision Rate (PR):The ratio of the number of correctly that the Asynchronous Timelinetechnique can signi cantly
reported instances to the number of reported instances. improve the RR of HyperBHHere, theAsynchronous Timeline

3) F1 Score: 2.RR PR technique usesl evenly distributed timelines. When using

4) Average Relative Error (ARE) ﬁ P o, =, 256.KB of memory, H_yperBF using\synchronous TimeIing

i) e _ achieves97% RR, signi cantly outperforms that of the basic
wheref; is the rgal frequency of iters; 1 is its estimated version 82%).
frequency, and is the query set. _ Processing speed (Figure 10e):We nd that HyperBF is
5) Throughput (Mops): Million operations per second. faster than other algorithms. The results show that under
B. Experiments on HyperBF different memory constraints, the throughput of HyperBF is
Parameter settina: We compare HvoerBE with Clock-S always 16 Mops, while that of TOBF and SWAMP are about
[1], SWAMP [24]? and Timg-Out élrz)om lter (TOBF) [;(;tfhm Mops gnd 9 Mops, rgspectively. The throughput of Clock
For HyperBF, we sed = 8 andl = 32 by default. For CAIDA, drops rap|dly with the increase of memory usage because
we set the time-based batch threshdldo 0:72 seconds. For whe.n using more memory, Clock needs to clean more cells
Criteo, we set the count-based batch threstbldo 40,000. PE' mser'qon. When using 1024KB of memory, the throughput
Under such settings, there are about 0.96M batches in CAI[%\CIOCI(is only a half of that of HyperBF.
dataset, and about 4.9M batches in Criteo dataset.
Accuracy of detecting batches (Figure 10a): We nd
that HyperBF always achieves the best accurady fact, Parameter setting: We compare CalmSS with Space-Saving
HyperBF, Clock, and TOBF always hau®0% PR, but Hy- (SS) [11], Unbiased Space-Saving (USS) [12], and Cold lIter
perBF achieves better RR than Clock and SWAMP. SWAMR6] + Space-Saving (CF+SS). For CalmSS, wewet 16
always hasl00% RR because it reports all unrecorded itemgnd P = 4 by default. We sek = 100 and conduct the
as batches, but its PR is less thd0% as it suffers high experiments using CAIDA.
false positive errors. When using 256KB of memory, HyAccuracy of nding top- k items (Figure 11a):We nd that
perBF achieve87%F; score, signi cantly outperforms Clock CalmSS always has better RR than SS, USS, and CF+SS.
(90%), SWAMP (28%), and TOBF 73%). The RR of CalmSS reache&% even if the memory size
Impact of cell line size {) (Figure 10b): We nd that a is only 32KB, while that of SS and USS are ab&% As
larger value of cell line sizé goes with higher RR of HyperBF,the memory size exceeds 128KB, the RR of CalmSS is very
and when the cell line size exceeds 8, HyperBF achievdsse t0100% The RR of CF+SS is smaller than ours because
the optimal accuracy. When settingl = 2 and using more the large volume of data stream Il it up very quickly.
than 256KB of memory, the RR of HyperBF decreases as tReequency estimation for topk items (Figure 11b):We nd
memory usage increases because the outdated cells arethmat CalmSS always achieves smaller ARE than SS, USS, and
cleaned in time. The two curves ¢f= 8 and| = 16 are CF+SS. When using 32KB of memory, the ARE of CalmSS
highly in coincidence, meaning that= 8 is already enough is 0:1, about 4 times lower than that of the other algorithms.
to achieve the optimal accuracy. When using 512KB of memory, the ARE of CalmSS7is
Impact of number of arrays (d) (Figure 10c): We nd that 10 *, while that of SS, USS, CF+SS afe8 10 3, 1:1
HyperBF performs well when usingg= 4 or d = 8 arrays. 10 3, and2:1 10 2, respectively.

C. Experiments on CalmSS

(a) Recall. (b) ARE, (c) Processing speed. (d) Queue lengthv). (e) Promotion thid. R).
Fig. 11: Performance of CalmSS (CAIDA).

(a) Recall (CAIDA). (b) Recall (Criteo). (c) ARE (CAIDA). (d) ARE (Criteo). (e) Speed (CAIDA).
Fig. 12: Performance of HyperCalm (CAIDA and Criteo).

Processing speed (Figure 11c): We nd that CalmSS is Accuracy of nding periodic batches (Figure 12a-12b):
faster than SS, USS, and CF+SEF+SS is slow becauseWe nd that the RR of HyperCalm always outperforms the
Cold lter needs extra memory accesses and hash computatisinawman solution on two dataset©n CAIDA, when using
Surprisingly, CalmSS is faster than SS and USS beca®@KB of memory, the RR of HyperCalm 4% while that of

it sends only hot items to Space-Saving, resulting in fewére strawman solution i88% On Criteo, when using 800KB
memory accesses to Space-Saving data structure. The L&Unemory, the RR of HyperCalm i80% while that of the
gueue is small enough to be held in caches, and thus doesstwman solution i85%

incur extra memory access. Freguency estimation of periodic batches (Figure 12c¢-12d):
Impact of LRU queue length (W) (Figure 11d): We ndthat We nd that HyperCalm always has smaller ARE than the
CalmSS performs well when the length of the LRU qweir strawman solution on two datasetSn CAIDA, when using
just8. When using 256KB memory, the RR of CalmSS usin§OKB of memory, the ARE of HyperCalm is abo® 10 3,

an LRU queue of lengthv = 8 is 91% while that of Space- which is4 times lower than that of the strawman solution. On
Saving (v = 0) is 77% Since the three curves af = 8, Criteo, when using 800KB of memory, the ARE of HyperCalm
w = 16, andw = 32 are highly in coincidence, we concludeis about1:3 10 4, which is4:6 times lower than that of the
thatw = 8 is enough to achieve satisfactory accuracy. strawman solution.

Impact of promotion threshold (P) (Figure 11e): We nd Processing speed (Figure 12e)Ve nd that the processing
that the optimal promotion threshoRl is 4 or 6. When using speed of HyperCalm always outperforms the strawman so-
256KB memory, the RR of CalmSS with =2 or P =4 is lution on two datasets.On CAIDA, when using 60KB of
about92% while that of Space-Saving®(= 0) is 76% Note memory, the throughput of HyperCalmi§:2 Mops, which is

that the optimalP is highly correlated with the dataset. 13:2 times higher than that of the strawman solution. The gap
. between HyperCalm and Clock+USS is huge because Clock
D. Experiments on HyperCalm needs to clean many cells per insertion, which harms the speed.

Parameter setting: We combine the state-of-the-art Clock-

Sketch and Unbiased Space-Saving to form a strawman so-

lution for nding top-k periodic batches (Clock+USS), and

compare our HyperCalm with it. The parameters (including

memory proportion) of HyperCalm and the strawman solution

are empirically set so that they achieve relatively good perfor-

mance. For HyperBF, we sdt= 8 andl = 32 by default. For

CalmSsS, we seP =7. (a) Recall (CAIDA). (b) ARE (CAIDA).

1) Setting on CAIDA We set the time-based batch threshold ~ Fig. 13: Impact of TimeRecorder queue length (

T to 0.072 millisecond. Each batch interwdl is rounded to Impact of the length of TimeRecorder) (Figure 13):

the nearest multiple of 0.72 millisecond. Under such settingsle nd that as the length of the TimeRecorder queue grows
there are about 4.1M periodic batches in CAIDA dataset. larger, the accuracy of HyperClam increases\e also nd

2) Setting on Criteo We set the count-based batch thresholthat HyperClam performs well when the TimeRecorder queue
T to 20,000. Each batch interv#ll is rounded to the nearestlength ¢ = 1024. As shown in Figure 13a, under 80KB
multiple of 100,000. Under such settings, there are abooft memory, when TimeRecorder queue lengthis 1024
14.7M periodic batches in Criteo dataset. HyperClam achieve87% RR. As shown in Figure 13b, under

	Introduction
	Background and Motivation
	Our Proposed Solution
	Key Contributions

	Background and Related Work
	Problem Statement
	Related Work

	The HyperCalm Sketch
	The HyperBF Algorithm
	The TimeRecoder Algorithm
	The CalmSS Algorithm
	Implementation

	Mathematical Analysis
	Error rate of HyperBF
	Error rate of CalmSS
	Effectiveness of Asynchronous Timeline

	Experimental Results
	Experimental Setup
	Experiments on HyperBF
	Experiments on CalmSS
	Experiments on HyperCalm
	Applying HyperCalm to Cache Systems
	Integration into Apache Flink

	Conclusion
	References

