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Abstract—In global data analysis, the central server needs
the global statistic of the user data stored in local clients. In
such cases, an Honest-but-Curious central server might put user
privacy at risk in trying to collect individual statistics of each
user. In response, the secure aggregation provides a solution for
calculating global statistics without revealing users’ privacy data.
However, existing secure aggregation protocols only focus on the
data in the form of vectors or common sets, which limits their
application scope. We formalize a general problem—key-value set
secure aggregation—that not only includes secure vector aggre-
gation and private set union but also supports more applications.
To address the proposed problem, we devise our solution (called
the KVSAgg framework) that promises satisfactory performance
in security, efficiency, and accuracy. Our key technique is a
homomorphic transform algorithm (called HyperIBLT) that is
not only capable of bidirectionally transforming data between
key-value sets and vectors, but also able to transform sum
operation of sets to addition of vectors. We implement KVSAgg
on both CPU and GPU platforms and perform the evaluation on
three use cases including federated learning, distributed data
counting, and finding global hot items. Compared with our
baselines, KVSAgg simultaneously achieves the best security,
efficiency higher by orders of magnitude, and zero-error in nearly
all cases. All codes are open-source anonymously.

Index Terms—Secure Aggregation, Key-Value Sets, Federated
Learning, Distributed Machine Learning, Multi-Party Computa-
tion, Semi-Honest, Honest-but-Curious, Sketches

I. INTRODUCTION

In wide-area data management where private user data are
generated and stored in local clients like mobile phones, the
data curator (i.e., a central server) calculates a global summary
(e.g., the sum vector, global counting, global hot items) of user
data to do analysis and provide services. However, when the
server is not fully trusted, the local private user data may be
leaked to the server during the calculation of global summary.
We focus on protecting user data under a common assumption
that the server is Honest-but-Curious (HBC), i.e., the server
honestly follows the protocol but tries to figure out additional
private data from each user. This problem of computing a
multiparty global summary on an HBC server is called secure
aggregation, which has attracted wide attention and has a great
many of solutions [1]–[10].
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However, the application of existing secure aggregation
solutions are limited by the form of data representation,
according to which we classify them into two types. The
first type is Secure Vector Aggregation (SVA) [1]–[6], where
users’ data are vectors of uniform dimension/length and the
global summary is the sum of all vectors. The second type is
Private Set Union (PSU) [7]–[10], where each user has a set
and the global summary is the union of all sets. Supporting
only vectors and ordinary sets are far from enough. For
example, both types of solutions cannot efficiently summing
up highly sparse vectors. Given two local sparse vectors
A = [5, 2, 0, 0, 0] and B = [0, 4, 0, 0, 0], compared with
uploading the whole vector using SVA, an ideal efficient way
is to upload non-zero elements through Key-Value (KV) sets,
i.e., {⟨0, 5⟩, ⟨1, 2⟩} for A and {⟨1, 4⟩} for B. The required
sum set is {⟨0, 5⟩, ⟨1, 6⟩}, which can then be converted to a
sum vector A + B = [5, 6, 0, 0, 0]. Here PSU does not work
because it cannot merge sets with values. Consequently, we
aim at solving a more general secure aggregation problem that
supports data in the form of KV sets.

We formalize the Key-Value Set Secure Aggregation
problem (PKV S

Agg ): In a distributed system including one
central server and N local clients, each local client u holds a
set Su with nu KV pairs. The central server aims to acquire the
aggregated sum set S =

⊕
∀u Su, where the sum set includes

all local keys and
⊕

is the sum operation of KV sets that
will sum up all values with the same key. Our security model
assumes that the central server is HBC, which means it will
execute the protocols correctly but also try to acquire as much
information as possible. All local clients are honest and should
be protected against the HBC adversary. Our PKV S

Agg problem is
a general one that includes existing SVA and PSU as special
cases (§ II-A). Besides, we give three typical use cases of
PKV S
Agg , that cannot be effectively solved by SVA or PSU:

Use case 1: Federated learning. The Federated Learning
(FL) [11]–[16] is a rising machine learning framework that
trains models at local clients without exchanging local private
data, and aggregates/sums up local gradient vectors in a central
Parameter Server. However, secure aggregation is still required
in FL because gradient vectors can leak user privacy and
incur attacks [17]–[24]. Instead of uploading all gradients in
one client, recent studies including MinMax [25] and GSpar
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Fig. 1. The workflow of the KVSAgg framework.

[26] shows that only uploading a small portion (e.g., 1%)
of the gradient vector is sufficient to achieve satisfactory
performance1. In this case, it is more efficient to aggregate the
data in the form of KV sets instead of highly sparse vectors.
Another example with much more sparse vectors is the FL
recommendation models [7], [27]. The full model with billions
of goods has no less than billions of parameters, while each
local user only accesses a certain number of goods that update
a few parameters [7]. It is also a better choice to aggregate in
the form of KV sets.
Use case 2: Distributed data counting. In distributed sce-
narios including global geo-distributed databases [28]–[30]
and Content Delivery Networks (CDN) [31]–[33], the central
server aggregates local states (e.g., the frequency distribution
of system events, and historical request frequency of a re-
source) to show a global view. The local states can be many
KV pairs of the event/resource identifier and the frequency (or
any additive value like the web-page visiting time) [34], [35].
Since the identifier may have an enormous range, the aggrega-
tion of vectors is not applicable. For example, when counting
global access number of each 128-bit IPv6 address using
vectors, the vector will be with a size of 2128 ≈ 3.4 × 1038

that cannot be stored and transmitted.
Use case 3: Finding global hot items. In edge computing
[36]–[40] and CDN, the central operator finds hot resources,
and caches/pushes them to the edge server for lower access
latency. The access logs in clients are KV sets and private
data. Compared with use case 2 that emphasizes values, here
we focus on hot keys. Similarly, PKV S

Agg is applicable.
From the above three use cases, we list three key re-

quirements for the PKV S
Agg solution as follows. R1: Security.

The primary concern is security. The private data in local
clients must be secure against the HBC central server. R2:
Efficiency. The solution should be efficient in communication
and local computation. The local clients can be mobile phone
or Internet of Things sensors, where network traffic and
compute power are limited. In contrast, the central server has
cheaper electricity expenses and specialized hardware, e.g.,
GPUs. R3: Accuracy. The solution should be as accurate as
possible under tolerable overhead. In the ideal case that the
sum set is error-free, the user can trust the answer without
considering the impact of errors on subsequent applications,
e.g., data analysis and FL.

1MinMax and GSpar selects a few elements in the gradient vector, transmits
the indexes of these elements with renewed values, and holds the others.

In this paper, we present the Key-Value Set Secure
Aggregation (KVSAgg) framework (including a key transform
algorithm HyperIBLT) that can address the PKV S

Agg problem
and meet the above three requirements. Security: To the best
of our knowledge, KVSAgg is the first secure solution for
KV set data against the HBC adversary under the centralized
aggregation model. Efficiency: KVSAgg uses small amount of
bandwidth usage and has a low computation overhead that only
three hash calculations are required to encode every KV pair.
Accuracy: KVSAgg has a sharp threshold that the error of the
aggregation sharply drops to zero when the size of HyperIBLT
exceeds 1.23 times of the data.

The methodology of our framework KVSAgg is problem
reduction. To be specific, we reduce the more general problem
of KV sets (PKV S

Agg ) to more well-studied SVA. As shown
in Fig. I, KVSAgg works in three steps: (Step1 Encode) At
local, each user u transforms its KV set Su to a vector Vu

using encoding function V ec(·); (Step2 Aggregate) Aggregate
local vectors by vector addition through SVA and the server
gets the sum vector V =

∑
u Vu; (Step3 Decode) The server

transforms the sum vector V back to the desired sum set S
using the decoding function Set(·). Generally, KVSAgg is
secure in every step because Step1 and Step3 are performed
in individual devices without data exchange, and the security
of Step2 is provided by SVA. Here, the key technique of
the framework is the transform algorithm, which includes
encoding and decoding functions.

It is critical for the transform algorithm to be homomorphic:
it must transform the sum operation of KV sets “⊕” to the
addition of vectors “+”. For example, for any two user sets
S1 and S2, the algorithm must satisfy V ec(S1) + V ec(S2) =
V ec(S1 ⊕ S2), which means that, in Step 2, the addition
of two vectors is equivalent to merging two sets first and
then converting the merged set into a vector. Only when
the algorithm is homomorphic can KVSAgg get the cor-
rect results: S = Set(V ) = Set(V ec(S1) + V ec(S2) . . . ) =

Set(V ec(S1 ⊕ S2 . . . )) = S1 ⊕ S2 . . . =
⊕

∀u Su. Besides being
homomorphic, the transform algorithm should also be compact
(i.e., the vector size is small) and accurate (i.e., the decoded
KV set is accurate).

It is a challenge to find the desired transform algorithm
that is homomorphic, compact and accurate. No existing algo-
rithms we know satisfies the requirement, including Invertible
Bloom Lookup Tables (IBLT) [41], sketch-based encode [42]–
[44], and one-hot encode (§ III-A). Among them, IBLT has the
best potential to be improved into the desired algorithm. IBLT



is a hash table that can transform data bidirectionally with
compact vector sizes while being error-free in the vast majority
of cases (arbitrarily close to 100%), which is compact and ac-
curate enough. However, IBLT is not homomorphic, which is
the primarily required feature. IBLT focuses on the operations
on a single device without considering the merge/addition of
multiple IBLT vectors. IBLTs with different hash functions
and hash seeds cannot be merged by vector addition, because
the merged IBLT cannot be decoded. However, even if we
set the hash functions and seeds to be the same, when one
key appears in different local sets with different values, the
decoding operation will fail and be considered as a failure.

We design HyperIBLT (inspired by IBLT) as the transform
algorithm for the KVSAgg framework. To make it homomor-
phic, we propose the merge operation of multiple HyperIBLTs
corresponding to the sum operation on KV sets. To ensure that
the merged HyperIBLT can be converted back, we propose a
new decoding operation that supports adding up different val-
ues with the same key. In decoding, a same key with multiple
values is no longer a fault, and we try to calculate the key
and the sum of values. In the decoding operation, we propose
a technique (called Rehash) to verify whether one bucket
contains the same key, regardless of the repetition of keys and
the corresponding different values. After the verification, we
can acquire the key and the sum value. We introduce detailed
HyperIBLT in § III-B. For efficiency and accuracy, HyperIBLT
benefits from IBLT, and, based on IBLT, HyperIBLT further
reduces 30% vector-size/communication/storage plus half lo-
cal hashing computation, with negligible negative impact on
accuracy.
Key Contributions:

• We define the problem of PKV S
Agg under the HBC model.

• We propose the framework KVSAgg and the transform
algorithm HyperIBLT to address PKV S

Agg with satisfactory
security, efficiency and accuracy.

• We implement KVSAgg on both CPU and GPU platforms
and evaluate it in three use cases. Compared with our
baselines, KVSAgg simultaneously achieves the best secu-
rity, orders-of-magnitude higher efficiency, and zero-error
in nearly all cases. All codes are available at Github [45].

II. PRELIMINARY

A. Problem Definition

We define the problem of Key-Value set Secure Aggregation
(PKV S

Agg ) as follows. N local clients are given, and each client
u owns a set of nu key-value pairs with no duplicate key2:

Su = {⟨ku,j , vu,j⟩|j = 1, 2, . . . , nu}, u = 1, 2, . . . , N.

Let K(Su) denote the key set, i.e., K(Su) =
{ku,1, ku,2, · · · , ku,nu

}, and vu(key) denote the value
corresponding to key in set Su (zero when key does not

2The absence of duplicate key is only for the convenience of description.
If duplicate keys do exist, HyperIBLT can still be applied directly.

exist). A central server aims at the sum set S, which is the
sum of all local sets:

S =
⊕

Su =

⟨k, v⟩ ∣∣∣ k ∈
N⋃

u=1

K(Su), v =
∑

u∈[1,N ]∧k∈K(Su)

vu(k)

 ,

where we sum up the value corresponding to the same key.
Let |S| denote the size of S, i.e., the number of distinct keys.
For simplicity, we assume that all parties (clients and server)
know the upper bound of |S|, denoted as M (⩾ |S|). We
discuss how to acquire M in § III-B.
Threat model. We assume that the central server is HBC
(semi-honest): due to regulatory or reputational pressure, the
server will obey the protocol but attempt to collect private
client data for profit. Clients want to disclose as little private
data as possible (preferably 0) in cooperating with the server.
We define the ideal functionality FAGG: Each client inputs
its own set Su with M and the server inputs M . The server
outputs the sum set S whilst the clients output nothing.
Following the ideal-real paradigm in multi-party computation
(MPC), KVSAgg is required to be semantically secure:

Definition 1. (Security. Following Definition 4.1 of [46].)
The protocol π securely realizes FAGG if for every Proba-
bilistic Polynomial-Time (PPT) adversary attacking the real
interaction, there exists a PPT simulator SQ attacking the
ideal interaction, such that for any input X and any security
parameter n ∈ N, the ideal interaction (SQ (1n,M, S)) and
the real interaction (viewπ

Q(X , n)) are computationally indis-
tinguishable as follows:

{SQ (1n,M, S)}X ,n

c≡
{
viewπ

Q(X , n)
}
X ,n

,

where two probability ensembles3 F1 and F2 are computation-
ally indistinguishable (denoted by F1

c≡ F2) if for every non-
uniform polynomial-time algorithm D there exists a negligible
function µ(·) such that for every X and every n ∈ N,∣∣Pr[D(F1(X , n)) = 1]− Pr[D(F2(X , n)) = 1]

∣∣ ⩽ µ(n).

Besides, we assume that the user is honest and will not attack
the server (e.g., poisoning [47]) or be corroded by the server.

Our PKV S
Agg is a general problem that includes both SVA

and PSU as special cases (explained in the following section).

B. Related Work on Secure Aggregation

We introduce existing secure aggregation solutions that
include SVA and PSU. Then we briefly introduce other works
on privacy protection under different models/assumptions, and
discuss why PKV S

Agg is a general problem.
Secure Vector Aggregation (SVA) [1]–[6], [48] can securely
compute the sum of local data vectors at a central server
in the HBC setting. Specifically, each client u owns a local
data vector Vu and the aggregation computes the sum vector
V =

∑n
u=1 Vu. The sum vector and all local vectors are of the

same size. One milestone in secure aggregation is the Secure
Aggregation Protocol (SAP) [1] proposed by Bonawitz et al.
SAP leverages the secure multiparty computation to compute

3A probability ensemble F1 = {F1(X , n)}X ;n∈N is an infinite sequence
of random variables indexed by X and n ∈ N.



the sum vector in a lossless manner. We outline the key steps
of SAP: (1) broadcast private keys using t-out-of-n secret
shares to prevent user dropouts. (2) generate, from each pair
of clients, a private random vector and masks it on the local
vector, and (3) sum up all masked local vectors and remove
the effect of masks. In the end, the server can acquire the sum
vector but cannot figure out each local vector.
Private Set Union (PSU) can securely compute the union
of local ordinary sets without values at a central server in the
HBC setting. Existing solutions can be divided into two types:
polynomial based [8], [49], [50] and Bloom filter based [7],
[51]–[53]. They cannot be directly extended to solve PKV S

Agg .
Other Models. In the decentralized model without the central
server, existing work [54] studies the problem of secure KV
set aggregation, but their solution does not meet the design
requirements for our centralized model. Another related topic
is the Differential Privacy (DP) [55]–[66]. DP can aggregate
KV sets securely by adding noise to the data at the cost of
accuracy [67]–[71]. See Sec V-C for experiment comparisons.
PKV S
Agg can potentially be composed with DP well. When

aggregating KV sets with local DP, the uploaded data is in
the form of the KV set whose values are with the noise [72].
PKV S
Agg can upload those KV sets efficiently.

Discussion—Why PKV S
Agg is a general problem. Our PKV S

Agg

is general because both SVA and PSU are its special cases
solvable by its general solution. Suppose we already have a
solution for PKV S

Agg . To solve SVA, for each vector, we can
set each key to the index of the element in the vector, and
the value is the key-th element in the vector. Thus the sum of
key-value set can figure out the sum of vectors. To solve PSU,
we set the key in the KV set to be the same as the ordinary
set, and assign the value to zero (i.e., no value). Thus the sum
of KV sets can figure out the union of ordinary sets.

C. Transform Algorithms between KV sets and Vectors

The sketch and the Bloom filter. Sketches [43], [44], [73]–
[84] are probabilistic algorithms capable of encoding the
KV set into a mergeable vector and approximately decoding
the value from the vector when the keys are given. The
Bloom filter [85]–[88] is a special case of sketch. It can only
approximate whether each key exists, not the corresponding
value. Among all sketch variants, the Count Sketch (CSketch)
[42] is well-known for its unbiased estimation and has been
applied to sparse vector compression [89]. A CSketch supports
three operations: encoding a KV pair, estimating the total
encoded value of a given key, and merging two CSketches.
A CSketch C consists of d sub-tables, C1, C2, . . . , Cd, and
each sub-table has w counters. By concatenating d sub-tables,
CSketch can be regarded as a vector with the size of w × d.
Encode(⟨key, value⟩). To encode ⟨key, value⟩, CSketch
picks one selected counter from each sub-table by independent
hashing and updates all these selected counters. Specifically,
the i-th selected counter is Ci[hi(key)] and the counter will
be added by value ·Hi(key), where hi(·) is a hash function
mapping a key to one counter in Ci equally, and Hi(·) is a hash
function mapping a key to {+1,−1} equally. In other words,

CSketch alters the d selected counters by value according to
the hash. Users can encode multiple key-value pairs with the
same key and different values.
Estimate(key). Given a key, CSketch can estimate the
sum of all encoded values corresponding to the key, denoted
as Vsum. In each sub-table Ci, CSketch gets one estimated
value by multiplying the selected counter by Hi(key), i.e.,
vi = Ci[hi(key)] · Hi(key). Among the d estimated values
from each sub-table, CSketch selects the median value as the
final estimation, i.e., V̂sum = Median{v1, v2, . . . , vd}.
Merge(C(1), C(2)). If two CSketches share the same param-
eters and hash functions, we can merge them by adding up
each corresponding counter and get a merged sketch with the
same parameters and hash functions. C = C(1) + C(2).
Accuracy. Although each estimated value V̂sum is usually inex-
act, the error is controllable with high confidence. Specifically,
CSketch guarantees each estimation has only a small probabil-
ity δ that the absolute error is greater than ϵ∥V ∥2, where ϵ and
δ are two small constants: Pr

[∣∣∣V̂sum − Vsum

∣∣∣ > ϵ∥V ∥2
]
⩽

δ, when w = 4ϵ−2, d = 8 ln(δ−1) and ∥V ∥2 =√∑
∀key (Vsum(key))

2 [90]–[92].
Invertible Bloom Lookup Tables (IBLT) [41] is a compact
data structure that can encode the KV set into a vector and
decode all KV pairs exactly in nearly all cases. Although its
name includes Bloom, it is quite different from the Bloom
filter and the sketch in terms of function and accuracy. IBLT
has d sub-tables, B1, . . . ,Bd, with w buckets per sub-table.
Encode(⟨key, value⟩). To insert a KV pair ⟨key, value⟩,
we first select one bucket from each sub-table by hashing.
The i-th selected bucket is Bi[hi(key)], where hi(·) is a hash
function mapping a key to any bucket in the i-th sub-table
with equal probability. Then we update all selected buckets.
In each bucket, there are three fields: (1) Freq, how many
pairs have been inserted into this bucket; (2) KeySum, the
sum of the keys in this bucket; (3) V alSum, the sum of the
values in this bucket. For every selected bucket, we add Freq
by 1, add KeySum by key, and add V alSum by value.
Decode(B). IBLT B can decode all inserted KV pairs
exactly in nearly all cases. The decoding procedure is:

1) Find out one bucket (called pure bucket) that contains
only one KV pair, i.e., Bi[j].F req = 1, by scanning
all buckets. From the pure bucket, we can decode one
KV pair, i.e., key = Bi[j].KeySum and value =
Bi[j].V alSum. Then we add ⟨key, value⟩ to the answer
set and delete it from the IBLT B as follows.

2) To delete ⟨key, value⟩, we access every sub-table
i, locate the bucket Bi[hi(key)], and subtract its
{Freq,KeySum, V alSum} by {1, key, value}, respec-
tively.

3) Repeat the above two steps until all buckets are zero.
If each key is inserted only once, IBLT works well. How-

ever, different users may have the same key. When every user
converts the local set into an IBLT and the server merges
all the IBLTs securely, one key in the merged IBLT may
correspond to different values from multiple users. Although



the optimization of IBLT has considered that a single key
may be inserted multiple times4, its decoding procedure fails
when one key corresponds to multiple values in different key-
value pairs, which is inevitable in calculating the sum set
on the central server. The hash tables [93]–[95] other than
IBLT cannot merge the entire data structure by vector addition
because a key may be stored in different locations, so they do
not meet our desire of being homomorphic.

TABLE I
NOTATIONS.

Symbol Meaning
N the number of local clients
S the aggregated sum set
M the upper bound of |S|
d the number of sub-tables
w the width of each sub-table
R the ratio of total buckets to inserted keys, R = w×d

M

TABLE II
THE COMPARISON OF ALGORITHMS.

Algorithm Security Space Efficiency Accuracy
Baseline 1 (One-hot) Yes Low High
Baseline 2 (CS) Yes High Low
Baseline 3 (CSK) No High Median
HyperIBLT Yes High High

III. KEY-VALUE SET SECURE AGGREGATION

In this section, we propose our framework KVSAgg for
PKV S
Agg and introduce the baseline transform algorithms using

One-hot vector and CSketch. These algorithms are either non-
secure, space-expensive, or inaccurate. Then we introduce our
transform algorithm HyperIBLT and discuss its performance
in security, efficiency, and accuracy in detail.
The KVSAgg Framework. Our KVSAgg framework is to use
a bidirectional homomorphic data form transform algorithm
between KV sets and vectors, and combine it with existing
SVA solutions. The workflow is as follows: (Step 1 Encode)
locally convert set data to vectors, (Step 2 Aggregate) aggre-
gate the vectors by SVA, and (Step 3 Decode) convert the
aggregated vector back to the set. The framework is secure in
every step: In Step 1, all clients convert data locally; in Step
2, existing solutions can aggregate vectors securely; in Step
3, data from different clients are no longer distinguishable
after the aggregation. Our baseline 3 is not secure because
it transmits additional information outside the framework.
The efficiency and accuracy of the framework depend on the
quality of the transform algorithm.
A. The Baseline Algorithms

Baseline 1—One-hot vector. The simplest baseline solution
of PKV S

Agg is to combine One-hot vector with SVA. In step 1,
for each local client u and its KV set Su with x-bit keys and
y-bit values, we construct a local One-hot sub-table of 2x y-
bit elements, where the key-th element records value. In step
2, the One-hot vector is securely summed up by SVA. In step
3, we scan the sum vector, find all non-zero elements, and
convert each element back to the KV pair. It shall be noted
that the One-hot vector cannot efficiently handle long keys due
to excessive vector size.

4The IBLT [41] adds an additional field called hashKeySum to each bucket.

Algorithm 1: Baseline Algorithm 2— CSketch
1 for Each local client u = 1, 2, . . . , N do
2 Insert all KV pairs in local set Su to C(u).
3 Initialize Encrypt() function of SAP.
4 E(u) ← Encrypt(C(u))
5 end
6 C ← Decrypt(E(1), E(2), . . . , E(N))
7 for Each key in the universal set U do
8 V̂sum ←Mediani{vi}, vi = Ci[hi(key)] ·Hi(key)

9 Append ⟨key, V̂sum⟩ to the sum set S.
10 end

Baseline 2—CSketch (CS) (Pseudocode in Algorithm 1).
In step 1, we construct a local CSketch C(u) with size d
and w (according to § II-C), and insert all KV pairs in Su

into the sketch. In step 2, after concatenating the sub-tables
of CSketch, the CSketch can be regarded as a vector Vu

with the size of w × d, and then we use SVA to securely
merge/sum up all local sketches. In step 3, the central server
restores the sum set, which includes all local keys and sums up
the values corresponding to the same key. However, CSketch
cannot restore keys because keys are not recorded in the vector.
Here we assume that the server knows a universal set U
that all keys must belong to. The server can enumerate all
possible keys, estimate the corresponding values by CSketch,
and construct the sum set. The problem is that this method will
generate many outlier keys (i.e., keys not in the sum set) and
the corresponding values, especially when the universal set U
is much larger than the sum set. Therefore, the second baseline
solution CS suffers from low accuracy and high computation
overhead on the server.
Baseline 3—CSketch with Keys (CSK). We make some
modifications to step 3 of Baseline 2. Let each client transmit
the keys contained in the local set to the central server, so
that the server does not need to enumerate the universal set.
Thereafter, the server can estimate the values using given keys,
and construct the sum set. Owing to this modification, baseline
3 eliminates outliers at the cost of exposing the key in a non-
secure way and consuming more traffic for key transmission.
Summary. As shown in TABLE II, One-hot vector requires an
excessive vector size (low space/communication efficiency).
CS can hardly convert a vector back to a set in Step 3
because it does not record/insert keys (low accuracy). CSK is
not secure because it transmits additional information outside
the framework without protection. Our HyperIBLT aims at
addressing all these defects and we introduce it as follows.

B. The HyperIBLT Algorithm

We propose HyperIBLT that overcomes the defects of the
baseline algorithms and achieves high security, efficiency
and accuracy. HyperIBLT follows our three-step framework
(Pseudocode in Algorithm 3 and 2).
Step 1 Encode: At each local client, given a set, we insert each
KV pair in the set into a local HyperIBLT structure one by one.
The data structure and the encoding operation of HyperIBLT
are identical to those of IBLT introduced in § II-C.
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Fig. 2. Illustration of HyperIBLT. This is a HyperIBLT with d = 3 sub-
tables and each sub-table has w = 6 buckets. When key A is inserted, it is
hashed to the 1-st, 3-rd and 4-th buckets in different sub-tables. To verify
whether the 6-th bucket in the second sub-table is pure, we hash the key B
in the bucket again to check whether h2(B) equals to 6. To verify whether
the 4-th bucket in the third sub-table is pure, we hash the key (A+B)/2 in
the bucket again to check whether h2((A+B)/2) equals 4.

Algorithm 2: The KVSAgg Framework/Protocol.
1 The server sends the parameters {w, d, seed} to all users.
2 Parallel-for Each local client u = 1, 2, . . . , N do
3 ▷ Step 1
4 Encode the local KV set:

B(u) ←Encode(Su, {w, d, seed})
5 ▷ Step 2
6 Initialize Encrypt() function of SAP.
7 E(u) ← Encrypt(B(u))
8 end
9 B ← Decrypt(E(1), E(2), . . . , E(N))

10 ▷ Step 3
11 Decode the sum HyperIBLT:
12 S ←Decode(B)

Algorithm 3: HyperIBLT: Encode and Decode.
1 Function Encode(Su, {w, d, seed}):
2 Initialize HyperIBLT B(u) with parameters {w, d, seed}.
3 for Each ⟨key, value⟩ in Su do
4 for Layer i = 1, 2, . . . , d do
5 j ← hi(key)

6 B(u)
i [j].F req ← B(u)

i [j].F req + 1

7 B(u)
i [j].KeySum← B(u)

i [j].KeySum+ key

8 B(u)
i [j].V alSum← B(u)

i [j].V alSum+ value
9 end

10 end
11 return B(u)

12 Function Decode(B):
13 Initialize the sum set S ← {}.
14 for Each Bi[j] satisfies hi

(
Bi[j].KeySum

Bi[j].Freq

)
= j do

15 ⟨key, value⟩ ←
〈

Bi[j].KeySum
Bi[j].Freq ,Bi[j].V alSum

〉
16 t← Bi[j].F req
17 S ← S + {⟨key, value⟩}
18 for Layer i′ = 1, 2, . . . , d do
19 j′ ← hi′(key)
20 Bi′ [j

′].F req ← Bi′ [j
′].F req − t

21 Bi′ [j
′].KeySum← Bi′ [j

′].KeySum− key× t
22 Bi′ [j

′].V alSum← Bi′ [j
′].V alSum− value

23 end
24 end
25 return S

Step 2 Aggregate: We arrange local HyperIBLTs into vectors
and sum them up at the central server using SVA protocol (e.g.,
SAP [1]). Specifically, we get the vector by putting the k-th
field of the j-th bucket in the i-th sub-table in the position
p = (i-1)w+(j-1)+(k-1)wd (i∈ [1, d], j∈ [1, w], k∈ [1, 3]).
The vector size is 3wd. Then, we sum up local vectors using
SVA, which can be easily applied to different field sizes. The
merging operation of two HyperIBLTs adds the counters at
the same position when all hash functions and seeds are the
same. The procedure of securely summing up all local vectors
naturally accomplishes the merging of multiple HyperIBLTs.
Step 3 Decode: We obtain the sum of all local vectors at
the central server using SVA and convert the vector back
to a HyperIBLT by the reverse arrangement procedure of
Step 2. Then we perform the decoding operation to convert
the HyperIBLT back to the sum set. The following part is
the key difference between our HyperIBLT and IBLT. The
decoding procedure of HyperIBLT should consider the case of
multiple inserts of a key with different values, because those
KV pairs are from different users. At a high level, the decoding
procedure of HyperIBLT is to find out one pure bucket that
all the KV pairs it contains have the same key, delete the key
from each sub-table, and repeat until all buckets are cleared.
There are two key operations: (1) pure bucket verification that
verifies whether a bucket only records a single kind of keys
using Rehash; (2) key-value pair extraction that extracts the
KV pair from a pure bucket and deletes it in all sub-tables.
Pure Bucket Verification—Rehash: Suppose a bucket Bi[j]
is a pure bucket that only records t KV pairs with the same
key. We know that Bi[j].F req = t,Bi[j].KeySum = t×key,
and Bi[j].V alSum records the total value. If the bucket is
pure, we can get the key by key = Bi[j].KeySum

Bi[j].Freq . The
hash index of the key must point to the current bucket, i.e.,
j = hi(key) = hi

(
Bi[j].KeySum

Bi[j].Freq

)
because the key has been

inserted here before. If the bucket is not pure, on the other
hand, Bi[j].KeySum

Bi[j].Freq is either indivisible or near-random. In
the near-random case, it is highly unlikely that hash index
hi

(
Bi[j].KeySum

Bi[j].Freq

)
equals to j. Therefore, we report PURE

if Bi[j].KeySum
Bi[j].Freq is divisible and hi

(
Bi[j].KeySum

Bi[j].Freq

)
= j.

Otherwise, we report NOT-PURE. We give an example in
Fig. 2. With a small probability (i.e., 1

w ), we report PURE
for a non-pure bucket. We show that such false rates have
little impact on decoding (§ III-D).
Key-Value Pair Extraction: For every bucket Bi[j] veri-
fied as pure, we calculate the pair ⟨key, value⟩ by key =
Bi[j].KeySum

Bi[j].Freq and value = Bi[j].V alSum. Then we delete
it as the reverse of the insert operation: for every sub-
table i′, locate the bucket Bi′ [hi′(key)], and subtract its
{Freq,KeySum, V alSum} by {t, key × t, value} respec-
tively, where t = Bi[j].F req.

To search for pure buckets efficiently, we use a queue to
store the pure bucket candidates. To begin with, we scan all
buckets and insert all the pure buckets among them to the
queue. Then we perform KV Pair Extraction for each bucket
in the queue until the queue is empty. In each extraction, we



modify/subtract d buckets. For each modified bucket, we check
whether it is pure, and add it to the queue if it is. In this way,
we search for each pure bucket without exhaustive scanning,
and a bucket will not be verified repeatedly without being
modified.

The decoding operation succeeds when all Freq fields are
zero, i.e., all buckets are empty, and fails when there is no
pure buckets yet some buckets are not empty. In case of
failure, some KV pairs (called failed keys) cannot be decoded
from HyperIBLT. Fortunately, HyperIBLT with recommended
parameters fails at a very low rate, and the number of failed
keys is a small constant (§ III-D) in rare cases of failure.
When decoding fails, we can still estimate the value of failed
keys: for a failed key, find its d selected buckets and report
the minimal ValSum field as the estimated value. In case of
failure, we can also rerun HyperIBLT with a new random hash
seed until it succeeds.
Parameter Configuration. With an upper bound of the set
size M , by default, we set d = 3 and w = R×M

d , where
R = 1.25 is the ratio of total buckets to M . We will explain
it in § III-D. In the cases with M unknown, a simple way
is to use

∑
u nu as M , which can be summed up by SVA of

1-element vector. When the local sets are similar to each other
and therefore |S| is much smaller than

∑
u nu, for efficiency,

we need a better upper bound of |S|. We can leverage the
recent efforts of private set union cardinality problem [96] to
calculate an upper bound of |S| with high confidence, e.g., a
PDCE protocol [97].
Novelty. Our HyperIBLT is inspired by IBLT but with the
following two key contributions. First, We devise the merging
operation of multiple HyperIBLTs, and devise the decoding
algorithm that can decode the sum of multiple different values
corresponding to the same key. IBLT focuses on a single
data structure and regards the case that one key has different
values as a fault. IBLT uses an optional additional field called
hashvalueSum to confirm that all values are the same, but
HyperIBLT does not. Second, HyperIBLT is more efficient
in transmission and local computation using rehash. In every
bucket, IBLT needs another extra field called hashkeySum (the
sum of the hash values of keys, not the previous hashval-
ueSum). Compared with HyperIBLT, the field can take 30%
more traffic and storage space in a typical setting5. The field
mandates an additional hash function in every bucket, doubling
the local hash computation in encoding and increasing the cost
of decoding. Our Rehash avoids the extra cost of computation,
storage and communication. Rehash has few shortcomings
except for a negligible increase in the probability of decoding
failure (§ III-D). In summary, HyperIBLT differs from IBLT
in (1) merging operation, (2) summation of values, and (3)
rehash verification. Similarly, HyperIBLT and IBLT share the
same decoding idea of finding pure buckets and deleting them,
which guarantees desirable accuracy.

5By 1-Byte Freq, 4-Byte KeySum, 4-Byte hashkeySum, and 8-Byte Val-
Sum, the addition cost is hashkeySum

Freq+KeySum+V alSum
= 4

1+4+8
≈ 30.8%.

Next we introduce how we achieve the three key require-
ments of security, accuracy and efficiency (proposed in § I).

C. Security
Our KVSAgg is secure in all three steps against the HBC

adversary. In the first step of locally converting set data to
vectors, all data is processed locally without exchanging. In
the second step of aggregating vectors, existing work (e.g.,
SAP) ensures secure aggregation. To the server, the client to
whom we add a KV pair is indistinguishable.

More strictly, we follow the standard simulation proof
framework [46] to prove that our Algorithm 2 securely
computes the PKV S

Agg problem. Lemma 1 is introduced by
existing work [1], and Theorem 1 proves that our algorithm
is semantically secure.

Lemma 1. Let τ be the secure aggregation algorithm (En-
crypt, Decrypt) with security parameter n used in Algorithm
2. The inputs of N clients C1, · · · , CN are u1, · · · , uN , and
the outputs are all empty strings λ; The input of server
Q is an empty string λ, and the output is

∑N
i=1 ui. Let

viewτ
Q(u1, · · · , uN , n) be the view of the server Q during an

execution of τ . Then there exists an simulator SτQ such that
for any input X = {ui}, there is{

SτQ

(
1n,

N∑
i=1

ui

)}
X ,n

c≡
{
viewτ

Q(X , n)
}
X ,n

.

Theorem 1. (Security) Let π be the Algorithm 2 with security
parameter n. The inputs of client Cu are Su and M , and their
outputs are all empty string λ; The input of server Q is M , and
the output is S =

⊕N
i=1 Si. Let viewπ

Q(S1, · · · , SN ,M, n)
be the view of the server Q during an execution of τ . Then
there exists an simulator SQ such that for any input X =
{S1, · · · , SN ,M}, there is

{SQ (1n,M, S)}X ,n

c≡
{
viewπ

Q(X , n)
}
X ,n

.

Proof. For the server Q, the real view can be written as
viewπ

Q(X , n) =
(
w, d, r;E(1), · · · , E(N)

)
.

We construct simulator SQ as follows:
1) SQ generates parameters w and d according to the algo-

rithm π: d = 3, w = R·M
d , where R = 1.25.

2) SQ chooses an uniform distributed random tape r′, and
uses this tape r′ to compute a seed′.

3) SQ encodes set
⊕N

i=1 Si as B =
∑N

i=1 B
(i) using Algo-

rithm 3 with {w, d, seed′}.
4) According to Lemma 1, by setting ui = B(i), SQ can

simulate the view of the secure aggregation algorithm τ
on the server Q through simulator SτQ, i.e.,{
SτQ

(
1n,

N∑
i=1

B(i)

)}
X ,n

c≡
{(

E(1), · · · , E(N)
)}

X ,n

The output of the simulator SQ can be written as
SQ (1n,M, S) =

(
w, d, r′;SτQ (1n,B)

)
.

Further, we have{(
w, d, r′;SτQ (1n,B)

)} c≡
{(

w, d, r;E(1), · · · , E(N)
)}

X ,n
.
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Fig. 3. Decode Success Ratio of HyperIBLT when d = 3.

D. Accuracy and Reliability.

HyperIBLT is error-free with a probability greater than
99.99%, and even in rare cases when failed keys cannot be
decoded, the number of failed keys is unlikely to exceed 10.
Accuracy Experiment. We can test the failure probability by
replacing the hash seed and reconducting the experiment. This
probability does not depend on the specific data set, but only
on the parameters M,R, and d. As shown in Fig. 3(a), the
success rate of fully decoding sharply approaches 100% as
we set R (i.e., the ratio of buckets and keys) to be greater
than 1.23. We set the number of keys |S| = M to 103, 104,
and 105. In Fig. 3(b), compared with IBLT, HyperIBLT has
nearly no accuracy loss, while saving both 30% size and half
the hash computation. In Fig. 3(c), we repeat the decoding 105

times with different hash seeds to calculate the portion of the
rare failures. Fig. 3(d) shows that the number of failed keys
will hardly exceed 10 even when existing KV pairs cannot be
decoded.
Accuracy Proofs. We prove that HyperIBLT is error-free
with nearly 100% probability/confidence when the size of
HyperIBLT is not too small. The decode fails by definition
if any KV pair cannot be decoded. Otherwise, HyperIBLT is
exact. We have the following theorem:

Theorem 2. (Accuracy) When w × d > Rd × M + ϵ and
M ⩾ Ω(d4dlogd(M)), the decoding of HyperIBLT fails with
probability O( 1

Md−2 ), where ϵ and Rd are small constants.

Rd =
(
sup

{
α
∣∣∣α ∈ (0, 1),∀x ∈ (0, 1), 1− e−dαxd−1

})−1

For example, R3 = 1.222, R4 = 1.295, R5 = 1.425, R6 = 1.570.

The detailed proofs can be found in our appendix [45].
Parameter Configuration Discussion. Based on the above
experiments and theorems, we know that a high success rate
can be obtained by setting w to a value slightly greater than
Rd×M

d . When d = 3, the failure probability is O( 1
M ), which

is often negligible. If we need an extremely small failure
probability, we can set d to 4, 5, or 6. The smaller the d is, the

smaller the Rd will be, so the overall cost (i.e., computation,
storage, communication) will be smaller (§ III-E). Therefore,
by default, we set d = 3, R = 1.25, and w = R×M

d .

E. Efficiency.

In this part, we analyze the complexity. Since HyperIBLT
can be combined with various SVA schemes, the overall com-
plexity of KVSAgg may vary. We first show the complexity of
the HyperIBLT part with no SVA protocol, and then show the
overall complexity of KVSAgg using SAP [1] as the SVA
protocol. We also show the complexity of the ideal lower
bound of the PKV S

Agg problem.
Complexity of HyperIBLT. As the client may be mobile
devices with limited resources, HyperIBLT should be efficient
in transmission, local storage and local computation. Since
w × d = O(M), the complexity of storing and transmitting
one HyperIBLT are both O(M). The computation of encoding
is O(dM) = O(M), where d is a small constant. The
computation of decoding is O(d2M) = O(M), because we
extract at most M KV pairs. Although we describe our hash
functions as fully random, many fast and simple hash functions
(e.g., MurmurHash3 [98] and BobHash [99]) also perform very
well.
Complexity of KVSAgg and Others. The complexity of
KVSAgg consists of two parts: the transform algorithm (Hy-
perIBLT) and the SVA (e.g., SAP [1]). In TABLE III, we com-
pare the complexities of (1) the lower bound of PKV S

Agg that any
solution requires, (2) the individual overhead of HyperIBLT,
(3) the KVSAgg including both HyperIBLT and SAP, (4) One-
hot with SAP, (5) baseline CS, and (6) baseline CSK. Apart
from showing the negligible failure probability, HyperIBLT
(as a transform algorithm) achieves the lower bound/optimal
complexity. To overcome the overall complexity bottleneck
caused by SVA, we can conveniently replace the SAP in
KVSAgg with new SVA solutions.

F. Discussions.

Client collusion and dropouts. At present, this work does
not study the collusion and dropouts of some clients, which
has been well studied by existing SVA schemes. We leave
them to the future work.

IV. APPLICATIONS

We introduce how KVSAgg works in three use cases:
Federated Learning. There are two scenarios of FL that need
to aggregate the key-value sets. The first scenario is gradient
compression using sampling (including MinMax [25], GSpar
[26] and FetchSGD [89]) that can be applied to the upload
of gradients in general FL models (e.g., FedAvg [12]). The
sampled data is in the form of many local key-value sets
that need to be aggregated on the central server. The second
scenario is the FL models with an extremely sparse data
matrix, e.g., the FL Submodel [7] for big recommendation
systems with billions of commodities and model parameters.
Only a few commodities and model parameters are related to
local data. In our experiment, we only apply KVSAgg to the



TABLE III
COMPLEXITY ANALYSIS. U ≫ M , WHERE U DENOTES THE SIZE OF THE UNIVERSAL SET OF KEYS. C = O(ϵ−2 ln(δ−1)) IS THE SIZE OF CSKETCH.

Complexity Single Client Server Failure Prob.Communication Storage Computation Communication Storage Computation
Ideal Lower Bound Ω(M) Ω(M) Ω(M) Ω(NM) Ω(M) Ω(NM) 0
HyperIBLT O(M) O(M) O(M) O(NM) O(M) O(NM) O( 1

Md−2 )

HyperIBLT+SAP O(M+N) O(M+N) O(NM+N2) O(NM+N2) O(M+N2) O(N2M) O( 1
Md−2 )

Baseline 1 (One-hot) O(U+N) O(U+N) O(NU+N2) O(NU+N2) O(U+N2) O(N2U) 0
Baseline 2 (CS) O(C) O(C) O(M) O(NC) O(C) O(U+NC) With errors
Baseline 3 (CSK) (Not Secure) O(C+M) O(C) O(M) O(NC+NM) O(C) O(NC+NM) With errors

first scenario, leaving the second one to future work. Since the
secure aggregation becomes harder and inefficient in practice
as N increases in size, we divide N clients into groups where
each group has at least G clients, and aggregate each group
using the intermediate sum proposed by Bonawitz et al. [2].
The server has one central aggregation node and multiple sub-
aggregation nodes. For each group, all clients in the group use
KVSAgg to calculate the intermediate sum set of these clients
on one sub-aggregation node. Then all sub-aggregation nodes
upload intermediate sum sets to the central aggregation node
without secure aggregation.
Distributed Data Counting. Given a large number of local
key-value sets, distributed data counting aims at estimating
the total value of a given key. For example, the mobile app
developer may track the visiting time of each interface or
the user’s click pattern to guide app development [72]. When
applying our KVSAgg, the key of the local set can be URL, IP
address, product name, or other identifiers, and the value can
be the frequency of the key, the access time, or other attributes.
The central server can apply KVSAgg to aggregating full
local sets and getting an exact sum set securely. Also, when
communication is limited and the exact sum is not required,
KVSAgg can be combined with many sampling methods.
These methods allow uploading part of the local set for an
approximate final result [31], [100].
Finding Global Hot Items. The central server searches for
hot/popular keys (e.g., IP addresses, file names and other
resource identifiers) with large total values. Following the con-
version of local data to the form of key-value sets, KVSAgg
can aggregate them securely, and then the server knows which
keys are hot after sorting them by value. Similar to the
distributed data counting, KVSAgg can be combined with
many sampling methods to save cost.

V. EXPERIMENTS

We implement KVSAgg, three baseline solutions (One-
hot/CS/CSK), and privKV on both CPU and GPU platforms,
and evaluate them in the three use cases. The source codes are
available at Github [45].

Following key results are observed: (1) In the FL
case, KVSAgg securely aggregates the data with no er-
ror in practice, while the baselines require 10× vector
size/communication/storage to achieve similar accuracy. (2) In
distributed data counting and finding global hot items, even if
the baselines use orders-of-magnitude larger vector sizes than
HyperIBLT, they cannot achieve zero error aggregation.

A. Experimental Preliminaries

Metrics:
• Mean Absolute Error (MAE): For two given key-value sets
S1, S2, we define MAE as

∑
key(|v1(key)−v2(key)|)/|S1∪S2|.

Specially we set vi(key) = 0 if key /∈ Key(Si).
• Root Mean Squared Error (RMSE):

√∑
key(v1(key)−v2(key))2

|S1∪S2|
.

• Precision: The number of true positive results divided by the
number of all positive results (including those not reported.)

• Test Accuracy (Acc.): The number of correct classification
in the test set divided by the size of the test set.

Datasets:
• FEMNIST: Federated EMNIST [101] is a native federated

image dataset built by partitioning Extended MNIST based
on the writer of images. It has 80,5263 28 × 28 samples
in 62 different classes (10 digits, 52 lower and upper case
English letters) and 3550 clients. We use Resnet-101 with
40M parameters and layer normalization for FEMNIST.

• CIFAR-10: CIFAR-10 is an image dataset consisting 60000
32 × 32 RGB images divided into a 50,000 training sets
and 10,000 test sets. Each image belongs to one of the 10
classes.

• CAIDA: We use an anonymized network trace dataset
collected by CAIDA [102] in 2018. Each entry in the dataset
is a 5-tuple (source IP address, source port, destination
IP address, destination port, protocol). A 5-tuple uniquely
identifies a UDP/TCP session. The slice used contains
network traffic in 1 hour, which includes 1.47G packets and
58.4M distinct entries.

B. Experiments on Federated Learning

We compare KVSAgg with three baseline solutions in FL.
Data Allocation: To conduct federated learning experiments
on CIFAR-10, we partition the training set into clients in the
following way to make it non-iid: Choose a main label in 10
classes for each client, then make sure that in the partitioned
CIFAR-10, every client consist of 90% images with the main
label. We use Resnet-9 with 6.5M parameters for CIFAR-10.
Since the number of clients in CIFAR-10 can be customized,
we conduct experiments using FEMNIST [101] dataset and
two different federated CIFAR-10 partitions.
CIFAR-small. 200 clients. In each iteration, we randomly
choose 12 clients and divide them into groups of 4, then
randomly select a total batch of size 600 from the partici-
pating clients to participate. The model is trained with 24,000
iterations.
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Fig. 4. Federated Learning experiments on HyperIBLT+GSpar.
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(a) CIFAR-small, MinMax.
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(b) CIFAR-large, Top-K.
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(d) FEMNIST, MinMax.
Fig. 5. Federated Learning experiments on HyperIBLT+{MinMax, Top-K}.

CIFAR-large. 2000 clients, 20 clients participating in each
iteration, total batch size 500.
FEMNIST. 3550 clients, 20 clients each iteration, and batch
size 600.
Implementation. We adopt the design of FL framework from
FetchSGD [89] using PyTorch, and implemented MinMax,
GSpar, and Top-K with HyperIBLT on its open source code.
We use CS(k) and CSK(k) to represent CS and CSK using the
parameter that results in k× vector size, where we define the
data structure sizes of HyperIBLT, CS, and CSK as the vector
size. Let K be the number of none zero values in one sampled
set, d = 3 be the number of hash functions used in all three
algorithms. For HyperIBLT, we set the length of HyperIBLT
to be W0 = 3.27K×1.25

d , which enables HyperIBLT to decode
successfully in all tests6. If HyperIBLT fails to decode, we
double its size, change the hash functions and insert the
gradients again, guaranteeing the success of decoding. For
HyperIBLT/CS/CSK, we use G = 4 as introduced in § IV.
For CS(1), we set W1 = 12.5

8d W0 to control7 the same
data traffic compared with HyperIBLT. For CSK(1), we have
W2 = 12.5W0d−4K

8d , considering the extra 4K bytes used to
store sampled keys.
Test Accuracy (Fig. 4 and 5). The results show that Hy-
perIBLT can achieve the best accuracy with 10× size saving
(network traffic and storage) compared with CS and CSK. We
alter the Sample Ratio (R) to adjust the portion (i.e., 1

R ) of
the gradient vector to be uploaded. Under the same size, the
CS(1) and CSK(1) averages 17.79% and 5.11% lower accuracy
on CIFAR-small, 18.93% and 6.21% lower on CIFAR-large.
CS(1) shows unsatisfying performance in Fig. 4(b), because

6Statistics reveal that the number of non-zero values in a union set of a
group of 4 sampled gradients is always smaller than 3.27K in the whole
federated learning process.

7Here, 12.5
8

= 0.5Byte Freq+8Byte V alSum+4Byte KeySum
8Byte Counter in CS

.

CS(1) is too inaccurate to make the FL model converge. With
3× size than HyperIBLT, CS(3) and CSK(3) are still 7.95%
and 2.48% slightly lower that HyperIBLT under 100 sample
ratio on CIFAR-small. With 10× size, CSK(10) has nearly
the same accuracy as HyperIBLT, but it is not secure for
keys. Similar to the results of HyperIBLT+GSpar, when using
MinMax, HyperIBLT shows a same degree of advantage. Due
to the normal jitter of the accuracy curve, some data points
in Fig. 5(b) show that HyperIBLT is slightly less accurate
than CSK(3) and CS(3), which use 3× larger size. For Top-K,
we saved 3× size instead of 10× using MinMax and GSpar.
Since MinMax and GSpar are more advanced and accurate, we
believe their results (saving 10× size) are more persuasive.

During the aggregation, both HyperIBLT and the One-hot
(i.e., applying SVA directly) are error-free (during the upload
gradient process) under any Sample Ratio, because the size
of HyperIBLT is set to be large enough to provide successful
decoding. The comparison of the sizes will be shown later.
As the sample ratio increases, the test accuracy decreases
gradually. The decline is not caused by our aggregation but
by sampling. In practice, the data curator can make a trade-
off between communication overhead and accuracy to select
a suitable sampling ratio (detailed discussion in MinMax
[25]). The curator can also reduce the decline of accuracy by
increasing the number of training rounds/epochs. We believe
that with the development of FL, there will be more scenarios
where sparse vectors need to be aggregated.

Computation Efficiency (Fig. 6). The computation time of
HyperIBLT is in the same order-of-magnitude as other parts.
One round of computation on local devices consists of four
parts: local training, sampling, HyperIBLT insertion and SAP
of HyperIBLT. We choose CIFAR-10-large and FEMNIST us-
ing HyperIBLT+MinMax Sampling under different sampling
ratios as an example. Compared with One-hot, we spend extra
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Fig. 6. Experiments on computational efficiency in FL.
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Fig. 7. The vector size that each client uploads.

computing overhead on the insertion of HyperIBLT, which will
reduce the overall computation efficiency.
Communication Efficiency (Fig. 7). In Fig. 7(a), we illustrate
the size that one local client uploads under different sample
ratios. In Fig. 7(b), we show the communication compression
ratio compared with FL without sampling. Our HyperIBLT
will be more communication efficient than One-hot when the
sample ratio is greater than 6.28. In other words, HyperIBLT
can save the communication only when the vector is sparse
enough. In Fig. 7(c), the largest vector size is observed
when each client holds totally different keys (1.5925KB set
for each). Since the size of the sum set increases linearly with
the number of clients, the vector sizes of HyperIBLT and CS
grows to keep the same accuracy. By dividing clients into
constant size groups § III-B, the vector size stops growing.
Fig. 7(d) shows a similar case when uploading the data from
FL+MinMax with a sample ratio of 10000.

C. Experiments on global estimation tasks

We conduct experiments on two distributed tasks: dis-
tributed data counting and finding global hot items, and com-
pare the performance of HyperIBLT, CS, CSK, and PrivKV (a
well-known DP solution). Compared with HyperIBLT, One-
hot is nearly impractical. When working on 32-bit IPv4
addresses, One-hot vector requires a 232 vector taking 16
GByte while HyperIBLT only takes less than 100MB (<
1% 16GByte). When comparing HyperIBLT with PrivKV, we
additionally tell all its clients the key set (i.e., the set of all

occurred keys in the sum set) as the key domain of PrivKV.
The reason is as follows. PrivKV and other DP solutions for
KV sets (e.g., PCKV [71], PrivKVM [67], and Selective MPC
[69]) assume that they are aware of the domain of keys and that
the domain cannot be too large (e.g., usually less than 104).
In contrast, the size of our key domain is nearly unlimited
(e.g., 232, or 264) and is all we required. PrivKV performs
poorly if it only knows the key as a 32-bit integer, therefore we
additionally provide it with the key set, which gives PrivKV a
greater advantage. The privacy budget of PrivKV is 1. Aside
from the comparison on original datasets, we also evaluate
their combinations with several sampling algorithms, including
MinMax, Iceberg, and local Top-k.
Data Allocation: We simulate a 500-device-distributed set-
ting, and the CAIDA dataset is partitioned in two ways:

1) iid: For each entry, we uniformly assign it to one of the
devices. Each device contains 181K source IPs on average.

2) non-iid: For each entry, we assign it by hashing its 5-tuple.
Each local device contains 50K source IPs on average.

Task Implementation—Distributed data counting. In this
task, we count the total number of times/entries that each
source IP occurs in local devices. The workflow includes:
(1) Select D entries on each local device (in chronological
order) to participate in counting. Let Su be the local set
where the key is source IP and the value is the number of
key’s occurrences/entries. (2) If any sampling solution (e.g.,
Iceberg) is combined, sample K source key-value pairs out
in each local device, and ignore the others in the following
procedure. Let S̃u be the set after sampling. When sampling
is not combined, S̃u = Su. (3) Aggregate S̃u using Hy-
perIBLT/CS/CSK/PrivKV. (4) Evaluate the result Ŝ in the
central server. Let S be the global sum set without sampling ,
S =

∑
u Su. Let S̃ be the global sum set with sampling, S̃ =∑

u S̃u. We calculate the metrics as follows. In the evaluation
without sampling, we use the MAE and RMSE to quantify
the error by the difference of S and Ŝ. In the evaluation with
sampling, we have two approaches of calculating MAE and
RMSE. To show pure aggregation error without contribution
of sampling, we compare S̃ with Ŝ to calculate the MAE &
RMSE, called Aggregation (Agg.) MAE/RMSE. To show the
actual error including sampling errors, we compare S with Ŝ,
called Estimation (Est.) MAE/RMSE.
Accuracy v.s. Vector Size (Fig. 8). When HyperIBLT elim-
inates the errors, CS/CSK/PrivKV still lead to considerable
errors under the same vector size. When the size is adequate,
HyperIBLT has an obvious advantage, i.e., practically zero-
error. When the size is very compact, CS/CSK/PrivKV has
small advantages against HyperIBLT. As shown in Fig. 8, on
both the iid and non-iid datasets, with enough sizes enabling
HyperIBLT to decode, it achieves zero error. While the MAE
of CS/CSK/PrivKV approaches but cannot reach 0 when they
are twice in size compared to HyperIBLT with 0 MAE. When
the size is too small for HyperIBLT to decode, we just estimate
the value (§ III-B), where HyperIBLT can perform nearly as
well as CS.
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Fig. 8. Distributed data counting on different datasets using HyperIBLT w/o or w/ different sampling algorithms.
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Fig. 9. Estimating global hot items on iid dataset using HyperIBLT w/o or w/ different sampling algorithms.
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Fig. 10. Experiments on single-core and multi-core compute time

Task Implementation—Finding global hot items. We find
the top-K most frequent source IPs in this task. Similarly,
we use Aggregation (Agg.) Precision and Estimation (Est.)
Precision to show the precision of HyperIBLT. The MAE in
this section only calculates estimated values of real hot items.

Accuracy v.s. Vector Size (Fig. 9). Experiments show that
HyperIBLT outperforms CS/CSK/PrivKV when the size is
large enough. When the vector size goes larger than 50MB,
the HyperIBLT becomes error-free with high probability, while
the other solutions cannot eliminate errors.

Computational Efficiency (Fig. 10). We use an 18-core
Intel(R) Core i9-10980XE with 4.6GHz boost frequency as our
computing platform and compare the single thread compute
time of HyperIBLT, CS and CSK. For any given sample size,
we control the data traffic of the three algorithms to be the

same. We set R = 1.25 for HyperIBLT. In Fig. 10(a), we show
that compared to CS and CSK, HyperIBLT only has negligible
tardiness when encoding. In Fig. 10(b), Sample Ratio is set
to 100, it is found that HyperIBLT is slightly slower than
CSK and way faster than CS in encoding. Experiments are
also conducted to measure the multi-thread performance of
HyperIBLT. When using p threads, we use p HyperIBLTs
instead of one. For every entry, we insert it to one of the
p HyperIBLTs by hashing. The encoding/decoding process of
the p HyperIBLTs is independent, so the encoding/decoding
time decreases linearly with the increase in thread number.

VI. CONCLUSION AND FUTURE WORK

In this paper, we formalize the new problem of PKV S
Agg

and propose the KVSAgg framework to address it. The key
innovation is a homomorphic transform algorithm HyperIBLT
that brings security, efficiency and accuracy. We conduct
rigorous mathematical analysis and perform the evaluation
on three use cases including federated learning, distributed
data counting, and finding global hot items. The results show
that, compared with our baselines, KVSAgg using HyperIBLT
simultaneously achieves the best security, orders-of-magnitude
higher efficiency, and zero-error in nearly all cases. All codes
are open-source anonymously. In the future, we plan to
conduct robustness studies that allow a bounded portion of
clients to be corroded by the server. Also, we will consider
the client dropouts.
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