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Abstract—In quantile estimation within a stream of key-
value pairs, recent work has made significant progress in query
flexibility, supporting quantile estimation for any key using a
unified statistical structure. However, despite this flexibility, their
query speed falls behind, unable to match the high speed of online
data insertion. This “offline query + online insertion” model is not
ideal for online quantile estimation. Our goal is to online detect
keys whose quantiles exceed a user-queried threshold in real-time,
such as identifying the user whose 95% latency exceeds 200ms
in network data. These keys, termed “Quantile-Outstanding
Keys,” are vital for anomaly detection in streaming data. In
this paper, we propose QuantileFilter, the first approximate
algorithm specifically designed for detecting quantile-outstanding
keys. QuantileFilter overcomes existing limitations by 1) enabling
fast online computation, capable of handling streaming data in
real-time with a constant processing time for each data item,
accelerating the state-of-the-art (SOTA) by 10 ∼ 100 times, and
2) maintaining high space efficiency, saving 50 ∼ 500 times
storage space compared to the SOTA while maintaining the same
accuracy. All associated code is available on GitHub.

I. INTRODUCTION

In data stream analysis, where each item presents itself as

a key-value pair, quantile estimation [1] is a vital function

applied in various fields, including network management [2],

[3], security [4], [5], fault detection [6] and more [7]. Recent

research has made significant progress in query capabilities.

They allow querying arbitrary quantile (e.g., 95%, 99%) of

arbitrary key using a single data structure, eliminating the need

to maintain separate structures for each key. For instance, in

a network data stream, it’s possible to query a user’s 95%

communication latency. Existing solutions typically follow a

“online insertion + offline query” mode, enabling fast data

insertion and slow estimation (i.e., approximation) of answers

upon query requests. However, the substantial difference in

query and insertion speeds limits their application range. A

“online insertion + online query” approach is more valuable,

especially in anomaly detection scenarios. For example, mon-

itors need to immediately identify the user (key) whose 95%

latency (value) exceeds 200ms, if such a user exists. To address

this, existing solutions rely on slow estimation of latencies over

a large number of keys, then compare these with 200ms. This

approach drastically slows down the algorithm to an offline

pace. Hence, our research focuses on online estimation:
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Problem: Online Detection of Quantile-Outstanding Keys.
In a data stream composed of key-value pairs, picking out

the keys whose value δ-quantiles1 go beyond a threshold

T in real-time, where δ and T are pre-defined. These keys

are identified as “Quantile-Outstanding Keys” or outstanding

keys, and the value quantiles that exceeds T are identified

as “abnormal quantiles”. We illustrate an example in Figure

1, and this functionality can be described with the following

SQL statement:

SELECT key
FROM Key_Value_Stream
GROUP BY key
HAVING QUANTILE(value_set, delta) >= T

Detecting outstanding keys is useful and straightforward in

many applications:

• In network tail latency monitoring, network monitors

observe communication latencies in real-time, identifying

outstanding user keys whose quantiles suggest latency

anomalies (e.g., 99% latency >200ms in SLA) and sub-

sequently localize the faults [8].

• In system performance monitoring, monitors routinely

check vital metrics like CPU usage, memory consump-

tion, and wireless device channel use [9], [10]. If a CPU

reaches 99% utilization for 50% of the time during what

should be a light load period, it indicates a 0.5-quantile

anomaly, suggesting a potential problem [11].

• In sensor data analytics [12], [13], devices located at the

network edge, such as sensors, generate large volumes of

stream data. When quantile anomalies occur, it signifies

events that merit attention, such as the presence of

animals triggering a sensor’s response.

Within these contexts, detecting outstanding keys has two

main requirements: [R1] Fast online computation. Tradi-

tional approaches are slow in querying, limiting the number of

queries monitors can perform. Consequently, they often sample

data less frequently, potentially missing brief anomalies or de-

laying warnings [11]. [R2] Efficient space usage. The solution

should be as space-efficient as possible to fit within the limited

storage capacities of network and sensor equipment.

1The complete formal definition can be found in Section II-A.
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Fig. 1: An example containing two users, where each square repre-
sents an item, and the number on it signifies its value. Considering
δ = 0.5 and a value threshold T = 3. When user A’s third item
arrives, its δ-quantile, which is the second highest number in the
value set {1, 5, 9}, is 5. This exceeds T , leading to reporting user
A as an outstanding key. At the same moment, user B’s value set is
{1, 1}, not meeting the criteria for reporting.

Existing solutions are hindered by their slow offline queries

and lack of space efficiency. They generally fit into two

categories: the holistic approach and the per-key approach.

The holistic approach treats the data stream as a single entity,

without differentiating between keys. Examples of this method

include algorithms like GK [14], KLL [15], [16], tdigest [17],

and DD [18], which have been adapted for various scenarios.

However, they require setting up a separate unit for every

possible incoming key, leading to intolerable storage demands.

On the other hand, the per-key approach calculates quantiles

for each distinct key using a specific data structure. This

granular approach has garnered significant research interest,

as evidenced by three recent papers: SQUAD [19], Sketch-

Polymer [20], and Histsketch [21]. Unfortunately, their can

only estimate quantiles for a user-given key, which requires

users to run complex and time-consuming offline queries for

all keys. Here, offline query refers to queries where the query

time cannot be considered a small constant2. Furthermore,

they preserve statistical data for any δ, enabling support for

flexible quantile queries. However, this is unnecessary for the

online scenarios we focus on. First, we do not need excessive

flexibility, as the δ for queries will not change rapidly for every

item. Our solution will allow slower adjustments of δ. Second,

this approach leads to space wastage due to the quantiles that

are not of our interest.

In this paper, we propose the first estimation algorithm for

online detection of quantile-outstanding key, named Quantile-

Filter. Its advantages are: [R1] Fast online computation:
QuantileFilter processes each data item in constant time, and

its efficient space enables quicker operations using fast storage

mediums like CPU caches or SRAM on network switches and

FPGAs. [R2] Efficient space usage: QuantileFilter saves up

to 500 times space compared to SOTA solutions with the same

high accuracy.

Technique I. For fast online computation, we integrate the

insert of incoming data and the query. To this end, we devised

2SOTA requires a query time significantly longer than the insertion time,
and cannot be considered a small constant. For example, GK and SQUAD,
which use GK, require binary search during querying. SketchPolymer needs to
query log (value range) number of counters, and HistSketch requires accessing
a remote server to obtain results.

a weight, Qweight, dedicated to assessing outstanding keys,

transforming the process of quantile comparison into one of

Qweight comparison, which is more suitable for real-time

computation.

Technique 2. For efficient space usage, we devise a compact

and high-accuracy sketch3 to estimate Qweight, achieving

efficient outstanding key report. Qweight significantly differs

from the traditional statistical targets of sketches, such as

the frequency of keys, because it can often be negative,

whereas most sketches are designed only for positive statis-

tics. Therefore, existing sketches are either inapplicable for

Qweight statistics or, if forced into service, yield low accuracy.

In response, we proposed a dual-part sketch technique: one

structure for the vague filtering of potential outstanding keys,

termed the vague part, and another for the precise tracking

of candidate outstanding keys’ Qweights, called the candidate

part. Our replacement strategy endeavors to admit elements

with positive, larger Qweights into the candidate part, while

retaining negative, smaller Qweights within the vague part.

II. PRELIMINARY

In this section, we first formalize the target problem and

discuss our rationale. Subsequently, we introduce the advance-

ments of related work.

A. Problem Formulation

Definition 1. (Stream Model [26]). In a key-value data stream

S = {〈x1, v1〉, 〈x2, v2〉, . . . }, we handle a continuous arrival

of data items, each appearing as a pair of a key and a value.

Items with the same key are grouped into a sequence, which

for a specific key x is noted as Sx = {〈xi, vi〉 : xi = x}, this

includes all pairs where the key equals x. Additionally, the

count of items in Sx, known as the frequency of x, is denoted

by n, and the collection Vx = {vi : 〈xi, vi〉 ∈ Sx} is referred

to as the multi-set of values for x.

Definition 2. (δ-Quantile [1]). For a key x with a frequency

of n, its values can be sorted in non-decreasing order, i.e.,

v0 ≤ v1 ≤ . . . ≤ vn−1. The δ-quantile of x is defined as

the item at index �δ · n�, denoted as qxδ = v�δ·n�, where �·�
denotes the floor function, and σ is bounded within interval

[0, 1).

Approximation algorithms allow for some error [1], so

we introduce an allowable rank deviation ε based on the δ-

quantile, leading to the definition of the (ε, δ)-Quantile:

Definition 3. ((ε, δ)-Quantile). The (ε, δ)-Quantile for a set

of n values v0 ≤ v1 ≤ . . . ≤ v(n−1) is the value at index

�δ · n− ε�, denoted as qxε,δ = v�δ·n−ε�.

In particular, if �δ · n − ε� < 0, then qxε,δ is considered to

be −∞.

We use the (ε, δ)-Quantile to define the Real-time Per-key

Quantile Filtering problem as follows.

3Sketch is a category of approximate algorithms used for statistical pur-
poses. [22]–[25]
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Definition 4. (Online Detection of Quantile-Outstanding

Keys). Based on the 〈ε, δ, T 〉 criteria, this filtering process

keeps a close watch on all items as they come in. If the (ε, δ)-
quantile of the recent set of values Vx for any key goes over

the set threshold T , that key x (termed as the outstanding key)

should be immediately reported. After the report, the value set

Vx is reset to empty, making room for new incoming values.

Formally, for each new item 〈x, v〉, we do:{
Report x and Reset Vx, if qxε,δ > T,

Add v to Vx if qxε,δ ≤ T,

The flexibility of the 〈ε, δ, T 〉 criteria: In broad applications,

we hope to support different filtering criteria for different

types of keys simultaneously, which will be feasible and be

discussed in Section III-C.

We prefer the (ε, δ)-Quantile over the simple δ-Quantile for

several reasons. It makes sure that removing ε values above T
from Vx still leaves more than δ proportion of the values in

Vx above T . It also offers two main benefits:

• Avoiding Premature Reporting. If a key x’s value has

only a 1% chance to exceed T but does so on the first

try, Vx would falsely show a 100% rate of going over.

Usual methods (ε = 0) would report this, but to avoid

such unlikely warnings, we wait for at least ε additional

values to exceed T before making a report.

• Avoiding Reporting Infrequent Keys. We aim to ignore

keys that don’t come up often. For instance, tracking a

δ = 0.95 quantile is meaningful for a key if it has more

than 20 values. If a key is observed only once and its

value exceeds T , it could misleadingly seem like all its

values are above T . Without a non-zero ε, such a key

would be wrongly reported, which we wish to avoid.

In our definition, we reset the value set after a report. This

practice, while not typical for static data, is standard and

crucial in real-time data analysis to ensure the precision of

reports and to minimize the chance of repeated alerts. When

a key is reported, it signals to the user that the quantile

qxε,δ for this key has exceeded the threshold T . Resetting the

value set ensures that only recent data is considered from

the moment after the last report, keeping the information up

to date. Ongoing reports mean that the quantile qxε,δ is still

above T . The epsilon parameter ensures that reports are not

too frequent, as they will occur less often than every ε values.

Without this reset mechanism, historical data could impact the

current analysis, potentially leading to skewed outcomes.

Example. Let’s consider a data stream that monitors noise

levels (measured in decibels, dB) across various neighbor-

hoods in a city. This stream updates every 5 minutes with new

readings. We apply per-key quantile filtering to detect when a

neighborhood’s noise level consistently exceeds the threshold

of 70 dB. Here, our quantile of interest, δ, is set to 0.8, and

we will use an ε value of 1 to avoid reporting occasional noise

spikes.

Data Stream Example (three keys):

• Neighborhood A: [65, 67, 72, 69, 74, 66, 68, 75]

• Neighborhood B: [60, 62, 64, 61, 63, 75, 80, 62]

• Neighborhood C: [55, 57, 59, 58, 76, 57, 56, 55]

Our Analysis:

• Neighborhood A: Out of 8 data points, three exceed the

threshold (72, 74 and 75 dB). With δ = 0.8, we consider

the �0.8∗8�+1 = 7-th lowest value (with indices starting

at 1), which is 74 dB. Then with ε = 1, we need to

consider 7− 1 = 6-th lowest value, 72 dB. Since this is

above the threshold, we would report Neighborhood A.

• Neighborhood B: Two readings exceed 70 dB. However,

the 6-th lowest value is 64 dB, which is below the

threshold, so Neighborhood B is not reported.

• Neighborhood C: There is one spike at 76 dB, and the

6-th lowest value is 57 dB. Despite the spike, the (1, 0.8)-

quantile doesn’t exceed the threshold, so Neighborhood

C is not reported.

B. Prior Art

We introduce three categories of related work based on

algorithm functionality: (1) Single-key quantile estimation

algorithms, (2) Multi-key quantile estimation algorithms, and

(3) Exact quantile calculation algorithms.

Single-key quantile estimation algorithms are used to es-

timate the quantiles for an individual key. Notable works

include GK [14] and KLL [15], [16]. GK employs a sum-

mary data structure to efficiently approximate quantiles within

a data stream, balancing memory usage with error bounds

through intelligent merging of sampled points. It’s widely

deployed in fields like real-time data processing and big

data analytics. KLL’s [15] main idea is to reduce storage

requirements through hierarchical sampling while ensuring

quantile accuracy. Other single-key quantile algorithms like

the t -digest [17], DD [18] and Q-digest [12] use different data

structures to reduce storage and quickly respond to quantile

queries. However, they are usually not suited for multi-key

scenarios as they require building and maintaining a separate

data structure for each key, significantly increasing storage use.

Additionally, they demand active querying by users to provide

results, which leads to high real-time computational costs.

Multi-key quantile estimation algorithms aim to estimate

quantiles across multiple keys. For example, SQUAD [19]

uses a compound data structure to track quantiles for multiple

distributions but suffers from slow query speeds and high

storage costs due to the complexity of its data structures.

SketchPolymer [20] improves storage and computational ef-

ficiency by mapping data to multiple lightweight structures.

However, it is designed for batch processing and offline

analysis, not real-time querying. HistSketch [21] employs a

histogram-based approach, using hierarchical histograms to

speed up queries. Yet, it still faces computational and storage

efficiency issues when dealing with real-time data. Like single-

key algorithms, multi-key methods require users to actively

choose quantiles and undergo complex calculations to get

results. These algorithms were originally designed for offline,

not real-time queries, which is unsuitable for our problem.
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In this context, the offline query denotes queries that do not

have small constant query times. Examples include GK and

SQUAD implementations that employ GK, requiring binary

searches during the query process. SketchPolymer involves

querying a logarithmic number of counters relative to the value

range, while HistSketch demands accessing a remote server to

retrieve the results.
Exact quantile calculation algorithms, such as histograms

[27], balanced trees [12], and sorting features, can provide

zero-error quantile calculations. For instance, SQL Server

utilizes built-in functions based on sorting or histograms [28].

Sorting methods are effective for static datasets by construct-

ing precise summaries to determine quantiles. However, these

algorithms typically operate on static datasets. In highly dy-

namic streaming scenarios, storing many buckets or rebuilding

when data distributions change incurs excessive update costs.

Although they offer the advantage of zero-error, their speed

limitations mean they may not be the best choice for streaming

scenarios requiring real-time insertion and query.

C. Introduction to Practical Sketch Tools
Here we introduce basic sketch tools used for frequency

estimation: the Count sketch [29], which are employed to

estimate the frequency of keys in a data stream. We will con-

struct a straightforward naive solution using it to preliminarily

address our target problem. This solution will then be refined

to present our final design. For other sketch algorithms, please

refer to [24], [25], [30]–[47].
The Count Sketch (Csketch) [29] is a probabilistic data

structure that serves as an approximate frequency table of keys

in the stream data. It operates with d arrays, each consisting

of w counters. Upon the arrival of a data item with key x , it

computes d pairwise independent hash values using x. Each

hash value points to a position within each of the d rows, and

the counter is added by a value given by Si(x), where Si(·)
is a sign hash function returning either +1 or −1 with equal

probability for the i-th row. During a query, for each of the

d hash functions, Csketch retrieves the counter at the hashed

index and multiplies it by the sign given by the hash function

Si(x). The estimated frequency of x is then derived by the

median of these d signed values.
The key idea of Csketch is that, the hash functions distribute

keys evenly across the counters, and the statistical methods of

choosing the median counter value help reduce the effect of

collisions. This provides an estimation of the key’s frequency,

allowing for efficient handling of large-scale data streams with

real-time updates and queries.
Csketch can be extended to support weighted sum, where

each data item is assigned a weight value w, and the query is

for the sum of the weights of all items for a certain key. To

implement this functionality, one simply needs to change the

increment value Si(x) of the Csketch counter to wSi(x).

D. Naive Solution
We propose a naive approach to address the Real-time

Per-key Quantile Filtering problem employing a pair of Cs-

ketches, which may differ in size. The initialization of two

Csketches, Csketchabove and Csketchbelow, is the first step

where Csketchabove is responsible for keeping the count of

occurrences for each key with values exceeding threshold

T , and Csketchbelow maintains the count of occurrences for

values not exceeding T .

As we process each incoming item 〈x, v〉 in the stream S,

the value v is compared against the threshold T to determine

the update path for the sketches:

• Increment x in Csketchabove if v > T .

• Increment x in Csketchbelow if v ≤ T .

Following the updates for a key x, we query its frequency

counts Fa from Csketchabove and Fb from Csketchbelow, by

the median of the d signed values in each sketch. These

frequency counts are used to decide if key k should be

reported, which is checked by seeing if Fb is less than or

equal to �(Fa + Fb) · δ − ε�. If this condition is met, then

the key is reported. Reporting the key triggers a reset in the

frequency counts for x in both sketches. This reset is done

by reducing the count Fa in every counter that x hashes to in

Csketchabove and decreasing the count Fb in Csketchbelow in

the same way.

This naive dual-sketch method has notable limitations. First,

the reset process after reporting introduces errors because it

assumes that the subtracted minimum value exactly reflects

the true frequency, which is often not the case due to hash

collisions. Second, the accuracy of the naive solution is highly

sensitive to the size of each sketch, demanding a larger

memory footprint for higher accuracy.

III. QUANTILEFILTER DESIGN

We present the structure of our QuantileFilter, which uses

two key techniques: Quantile weight (Qweight) and Candidate

Election. Qweight allows a single action in one sketch to

handle what would otherwise require three separate actions

(one insert and two queries) in the naive solution involving

two sketches, leading to a more efficient workflow and faster

processing. The Candidate Election method identifies the keys

with the highest chances of being reported by using a process

of competitive selection. The keys that come out on top from

this process are counted more accurately, which greatly lowers

the chance of misreports due to hash collisions. In Table I, we

present the key notations used in this paper.

Notation Description
x, v Item key, Item value
ε, δ, T Rank Deviation, Quantile, Value Threshold
d,w Depth (rows), Width (columns) in Csketch
Ci[j] Counter at row i, column j
hi(x) Hash function mapping item x to a column
Si(x) Sign function returning +1 or −1

TABLE I: Key Notations Used in This Paper.

A. Quantile Weight Technique

Motivation (illustrated in Figure 2): In the naive solution,

we employ two Csketches to count values that either exceed

or do not meet the threshold T . This can lead to unnecessary
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Value T Value > T

Naïve Solution

Count Count

Qweight Tech. +11
Fig. 2: A comparative illustration between the naive solution

and the Quantile Weight Technique. Blue squares represent

items. Items with a green background are those with a value

less than or equal to T, and those with red are items with

a value greater than T. The naive solution uses two separate

Csketches to count these two types of items. The Quantile

Weight Technique, however, employs only one Csketch.

complexity because, for reporting purposes, we only need to

identify whether to report the key, not the count of values on

either side of T .

Qweight Definition. We define Qweight as follows. Assign a

weight of −1 to items less than or equal to T and a weight

of + δ
1−δ to items greater than T . The Qweight of a key is

defined as the sum of the weights of all its items

Qw(key) :=
∑

vi:vi�T

−1 +
∑

vi:vi>T

δ

1− δ
.

Convert (ε, δ)-Quantile to Qweight. Considering the special

case when ε = 0, we find that qxδ > T is equivalent to

Qw(key) � 0, which can be demonstrated as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
For qxδ > T, indicating at least n−�nδ� items exceed T :

Qw(key) � δ
1−δ

· (n−�nδ�)−�nδ� = nδ−�nδ�
1−δ

� 0,

Conversely, for qxδ � T :

Qw(key) � δ
1−δ

· (n−�nδ + 1�)−�nδ + 1� = nδ−�nδ�−1
1−δ

< 0.

Similarly, for the general ε-biased quantile, qxε,δ > T is

equivalent to Qweight(key) � ε
1−δ .⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

For qxε,δ > T, indicating at least n− �nδ − ε� items exceed T .
Qw(key) � δ

1−δ
· (n− �nδ − ε�)− �nδ − ε�

= nδ−�nδ−ε�
1−δ

� ε
1−δ

,
For qxε,δ � T,

Qw(key) � δ
1−δ

· (n− �nδ − ε+ 1�)− �nδ − ε+ 1�
= nδ−�nδ−ε�−1

1−δ
= nδ−�nδ�−1

1−δ
+ ε

1−δ
< ε

1−δ
.

Therefore, we can completely convert our problem to de-

termining whether

Qweight(key) � ε

1− δ

is true. If it does, we report the key and reset Qweight(key)
to 0.

Specifically, we employ a Csketch data structure to maintain

and calculate Qweights of keys in a data stream as follows.

Qweight Estimation with Csketch (See Pseudocode1). We

use a Csketch with d rows and w columns, where each cell

counter is denoted as Ci[j], with i indicating the row and j
the column. When a new item 〈x, v〉 arrives, we first compare

its value v with T to calculate the item’s weight Qw: Qw is
δ

1−δ if the value v is above a threshold T ; otherwise, Qw =
−1. We then insert Qw into the count sketch by updating the

sign function’s Qw times, which is done by adding Si(x) ×
Qw to Ci[hi(x)] for each row i. To estimate the Qweight

for x, we compute an estimate value for each row by Si(x)×
Ci[hi(x)], and then take the median of these values as the final

estimate for the Qweight, denoted as Q̂w(x). This method,

using the median, helps improve the accuracy of the estimation

by reducing the impact of outliers due to collisions. If Q̂w(x)
is greater than or equal to ε

1−δ , we report the key x, and

then delete its Q̂w(x). The deletion operation for Q̂w(x) of

key x involves decrementing the mapped counter Ci[hi(x)] by

Si(x)Q̂w(x) in each row i of the Csketch.

Algorithm 1: Qweight Estimation with One Csketch.

Input: A stream of items 〈x, v〉
Output: Report keys with qxε,δ > T .

1 Initialize Csketch counters Ci[j] to 0 for all i and j.
2 for each incoming item 〈x, v〉 do

3 Compute item Qweight: Qw ←
{

δ
1−δ

, if v > T

−1, otherwise.

4 Update counters:
Ci[hi(x)] ← Ci[hi(x)] + Si(x)Qw, ∀i ∈ 1, . . . , d

5 Estimate key Qweight:

Q̂w(x) ← Mediand
i=1{Si(x)Ci[hi(x)]}

6 if Q̂w(x) � ε
1−δ

then
7 Report key x and decrease Ci[hi(x)] by

Si(x)Q̂w(x).

Technical Details. For high space efficiency, sketch counters

are typically integers instead of floating-point numbers. How-

ever, the item weight, Qw = δ
1−δ , might not be an integer.

A straightforward solution is to use floating-point numbers

for the sketch’s counters. But we found another approach

that works well: (1) First, add the integer part of Qw (i.e.,

�Qw�) to the counter. (2) Then, with a probability equal to

the fractional part of Qw, that is Qw − �Qw�, which falls

within the interval [0,1), increment the counter by one. This

method ensures that the counter’s expected increase is Qw,

allowing for an unbiased addition of Qw. The variance of this

scheme is given by (Qw−�Qw�) ·(1−(Qw−�Qw�)), which

is smaller than 0.25.

B. Candidate Election Technique

Our new optimization, called Candidate Election, attempts

to track keys (candidate keys) that are most likely to exceed

the threshold T , providing them with Qweight statistics that

are not only more accurate but also less susceptible to hash

collisions, thus boosting the overall reporting precision. Ex-

panding upon the aforementioned Csketch, which we refer to

as the vague part, Candidate Election incorporates a novel data
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Algorithm 2: QuantileFilter with Two Parts.

Input: A stream of items 〈x, v〉.
Output: Report keys with qxε,δ > T .

1 For each incoming item 〈x, v〉 do:
2 Compute the fingerprint fp and item Qweight Qw.
3 Locate the bucket B by hashing hb(x).
4 if fp matches an entry 〈fp,Qwfp〉 in bucket B then
5 Update Qwfp depending on v.
6 Report key x and reset Qwfp if Qwfp exceeds T .
7 else if bucket B has space then
8 Add entry 〈fp, w〉.
9 else

10 Insert item into the vague part.

11 Estimate Qweight Q̂w(x) from the vague part.

12 if Q̂w(x) exceeds T then
13 Report key x and reset its Qweight in the vague part

to zero.
14 Identify the entry 〈fp′,MinQw〉 with the smallest

Qweight in B.

15 if Q̂w(x) is greater than MinQw then
16 Remove 〈fp′,MinQw〉 from candidate part and

insert into vague part.

17 Insert new entry 〈hfp(x), Q̂w(x)〉 into candidate
part and remove from vague part.

structure (named the candidate part) to find candidate keys and

accommodate them. When an item cannot be accommodated

in the candidate part, we fall back to the vague part, ensuring

that no key is left untracked. Our illustration is in Figure 3.

Data Structure. The candidate part is an array composed of

m buckets, with each capable of holding b entries. Each entry

〈fp,Qw〉 comprises a key fingerprint — a 16-bit hash value

of the key generated by the hash function hfp — alongside

an integer counter that records the Qweight for that key. A

separate hash function hb(x) randomly allocates each key x
to one of the m buckets.

Reason for Fingerprint Use. We store a candidate key’s fin-
gerprint instead of the complete key for space efficiency and
structural neatness. Firstly, fingerprints take up less space,
with controlled length, unlike the potentially long and variable
keys. Secondly, fingerprints suffice for real-time reporting and
do not face the offline issue of reporting a fingerprint without
the full key being known. Errors from fingerprints are small
and typically constitute a negligible part of the overall error.
Using 16-bit fingerprints ensures a collision probability under
0.01%, and using longer fingerprints can further reduce the
likelihood of hash collisions.
Item Insertion (see Pseudocode 2). When a new item 〈x, v〉
arrives, it is initially hashed to a bucket B within the candidate

part. Then, one of the following three scenarios occurs:

1) If the key’s fingerprint matches any entry 〈fp,Qwfp〉 in

bucket B, the Qweight counter Qwfp is updated based on

v, by either adding δ/(1− δ), or subtracting 1. If Qwfp

exceeds the threshold T , the key is reported, and Qwfp

is reset to zero.

2) If the bucket has space and the fingerprint is not matched,

the key’s fingerprint and Qweight are added to it.

Candidate Part

Vague Part

fpA,41

…

…

Q = 9
fpA,50

Report & Reset
1 …

fpD,10

fpE,-2

1

-2

+9 +9-9

222
fpC,11

…

…

Empty

Insert <fpC, 9> Insert <fpE,-2>

A Q = 1B Q = 9C

: = 0.9, = 5: = 8, = 3

tyy
fpB,-1

Estimate =Median{10, 11, 13}=11
Delete <fpC, 11> 

13 24

-11 0-2-2

10 -1111

Fig. 3: Overview of Quantile Filter, comprising two parts: candidate
and vague. In the figure, the candidate part includes 3 buckets, each
capable of holding up to 3 entries. The vague part is a Csketch with
a size of 8*3 counters. We demonstrate three instances under δ =
0.9, ε = 5.
Case A: When key A arrives with a +9 Qw, it matches a fingerprint
in the candidate part and its Qw is directly updated. Since it reaches
the threshold ε

1−δ
= 50, A is reported and reset.

Case B: When key B arrives, there is a vacant spot in the candidate
part, so it is directly stored.
Case C: When key C arrives with a +9 Qw and finds no vacant spot
and no fingerprint match, its +9 Qw is inserted into the vague part.

Meanwhile, its Qw is estimated to be Q̂w = 11. As this is greater
than the smallest fingerprint E’s corresponding -2 in the bucket, a
swap is made between 〈fpC, 11〉 and 〈fpE,−2〉.

3) If the bucket is full, the item is inserted into the vague

part as introduced previously. If its new Qweight Q̂w(x)
exceeds the threshold T , we report the key, and its

Qweight in the vague part is reset to zero. Otherwise,

if the new Qweight Q̂w(x) is greater than the smallest

Qweight in bucket B, an exchange occurs between the

candidate and vague parts. In the bucket B, we locate the

entry 〈fp′,MinQw〉 with the smallest Qweight, remove

its contents from the candidate part and insert them into

the vague part; then we fill the vacant position in the

candidate part with the new entry 〈hfp(x), Q̂w(x)〉 and

remove it from the vague part.

Beyond the standard item insertion process, we also support

three additional operations: query, delete, and reset.

To query the Qweight for key x, we first locate the bucket B
in the candidate part using hash hb and calculate the fingerprint

fp for x. If a matching fingerprint is found in the bucket, then

the Qweight for x is directly available. There is no need to

consult the vague part for this information. Conversely, if there

is no fingerprint match in the bucket, we proceed to estimate

the Qweight using Csketch method in the vague part.

To delete the Qweight for key x, we locate which part x
is in using the query method and then clear it using the

corresponding part’s method. If it’s in the candidate part, we

zero the Qweight counter directly; if it’s in the vague part, we

perform Csketch’s deletion operation.
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To reset the data structure, a fixed-size QuantileFilter needs

to be periodically cleared. This is partly due to real-time

considerations, as outdated data should not be included, and

partly due to accuracy, as it cannot maintain precision with

an unlimited number of insertions. The reset operation is

straightforward: all data structures are reset to empty. If it

is necessary to adjust the size of the data structures, this can

be done at this time.

Technical Details. To ensure the algorithm functions properly,

some detailed issues must be addressed:

• Handling the missing key for vague part hashing. Since the

candidate part stores only fingerprints, the hash location for

the vague part is determined by combining the fingerprint

with the bucket index from hb(x), thus modifying the

original hi(x) to hi(fp + hb(x)). This method allows

item insertion based on fingerprints, maintaining accuracy

comparable to hashing the original keys.

• Handling the overflow of counters. The algorithm keeps

keys with higher Qweights in the candidate part, so most

vague part’s Qweight stay small or negative. When nu-

merous distinct keys map to the same counter, creating

a hash collision, these keys are allocated +1 or -1 by

the sign function with equal probability. This approach

allows keys with similar weights to offset each other,

thereby reducing the risk of overflow. Consequently, we

can adopt 16-bit or even 8-bit counters to conserve space

while maintaining close to 100% accuracy. Yet, it is crucial

to prevent counters from naturally rolling over due to

overflow, such as turning from the maximum 16-bit value

of 32767 to -32768 with an increment of 1. Operations

must prevent overflow reversals, ignoring any addition or

subtraction that would cause it.

C. Flexibility of QuantileFilter Functions

We expand the flexibility of the QuantileFilter’s filtering

criteria 〈ε, δ, T 〉 to support different criteria for different keys,

dynamic modification of criteria, and the coexistence of mul-

tiple criteria for the same key.

First, QuantileFilter supports specifying different 〈ε, δ, T 〉
reporting criteria for different keys. For example, when

monitoring network data flows, it is necessary to pay special

attention to the abnormal delays in UDP data flows used

for audio and video calls (such as Zoom and WeChat calls)

and set tighter reporting criteria for them. In this scenario,

we assume that the users of the algorithm will specify clear

criteria in advance, i.e., input the criteria 〈εx, δx, Tx〉 for the

algorithm along with each item 〈x, v〉. This is not difficult for

users; in the example mentioned, they can accurately know the

application type through packet header analysis and set criteria

accordingly. Implementing this functionality in QuantileFilter

is not difficult; we simply substitute the criteria 〈εx, δx, Tx〉 for

the existing algorithm parameters 〈ε, δ, T 〉 during operation.

Second, QuantileFilter supports modifying the 〈ε, δ, T 〉
reporting criteria for a specific key. For example, if certain

keys have unique characteristics that have been confirmed by

users, the reporting criteria for these keys can be relaxed.

To modify key x, we remove its Qweight via the deletion

operation, then will insert under new criteria. Following crite-

ria change, Vx resets to empty. Experimental results indicate

that the impact of modifications is quite complex; for detailed

discussion, please refer to V-D.

Third, QuantileFilter supports setting multiple criteria for
the same key and reporting when any criteria are met. For

example, we may be interested in both the 99th percentile and

the 95th percentile of delta for a key. However, the original

QuantileFilter approach cannot be directly applied here be-

cause, in QuantileFilter, we only record one Qweight for a

key, and one Qweight cannot support two different criteria

(unless only ε differs). Therefore, we assign the monitoring of

multiple criteria for a key to multiple keys, i.e., we combine the

original data key with the criterion number to form a new key

tuple, which is then inserted into QuantileFilter for processing.

If a key supports r monitoring criteria, it will result in r new

keys and r insertions into QuantileFilter. The overhead of this

scheme increases with r, but it performs well when r is small.

D. Ours Design Choices and Innovative Techniques

Here, we discuss other design choices in the QuantileFilter

algorithm and their impacts, as well as the innovative aspects

of QuantileFilter’s algorithmic techniques with their inspira-

tional significance to other approximation algorithms.

Choice 1. Strategy in candidate election. Currently, if a

key’s Qweight Q̂w(x) in the vague part exceeds the smallest

Qweight MinQw in the bucket, we opt to replace it into

the candidate part (Comparative Replacement). In reality,

various replacement strategies could be considered, such as

switching the key into the candidate with a probability of

Max
(

Q̂w(x)

Q̂w(x)+MinQw
, 0
)

(Probabilistic Replacement), or en-

suring its replacement with a 100% certainty regardless of the

Qweight size (Forceful Replacement). We have experimented

with these strategies and found that they do not significantly

affect the overall performance.

Choice 2. Sketch type of the vague part. Our vague part

is designed based on Csketch, but it could also be replaced

with other sketches, like the Count-Min Sketch (CMS) [25].

Our experiments indicate that using CMS does not improve

the accuracy. However, this does not entirely eliminate the

possibility that among the existing dozens of sketches, there

might be ones more suitable for the vague part. We leave this

question for future work.

We believe that the primary contribution of this paper is

studying a new problem from the perspective of approxima-

tion algorithms and providing a feasible solution. However,

the technical contributions of QuantileFilter’s design is also

noteworthy. We discuss this in hopes that it will inspire the

design of other algorithms.

Technique 1. Mitigating the negative impact of fingerprints.

Fingerprints are a common technique in filters, like cuckoo

filters. Their downside is the loss of the original key, which

prevents existing sketches from locating the correct counter

based on hashing the key. As we pointed out, this issue can

be addressed by changing the hash computation from the
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key to the fingerprint and its bucket index. As long as “the

number of buckets” × “2 to the power of fingerprint length”

is much greater than the number of counters in the sketch, this

approach will not lose visible accuracy. All sketch methods

that involve storing keys or fingerprints could potentially

consider this technique to reduce the space occupied by keys

and fingerprints, such as JoinSketch [48] and ElasticSketch

[24].

Technique 2. Designing specific dual part solutions for

specific problems. Our approach uses a dual-part structure

to differentiate large Qweights, contrasting with traditional

sketches that separate keys based on frequency. Our strategy,

which assigns a key’s Qweight exclusively to one part (either

candidate or vague), simplifies calculations and sharpens the

algorithm’s logic. For more specific estimation objectives like

gradients [49] or itemsets [50], employing a dual-part structure

may be beneficial.

IV. MATHEMATICAL ANALYSIS

In this section, we analyze the error bound of QuantileFilter,

its time complexity, and its space complexity. First, we analyze

the performance of QuantileFilter without using the candi-

date part (Theorem 1), then we show its performance after

removing the top-k keys from QuantileFilter (Theorem 2), and

finally, we demonstrate how the candidate part can reduce the

error (Theorem 3). After completing the error analysis, we

discuss the time and space complexity of QuantileFilter.

We begin by analyzing the error bound of the vague part.

The vague part is structured according to the existing Csketch

algorithm. Originally, Csketch was designed for weights equal

to 1, mainly for counting key occurrences. However, it can

be extended to handle weights, including negative ones. By

following the proof methodology of Csketch, we can deduce

the following theorem:

Theorem 1. In a model comprising solely the vague part
(characterized by size parameters d and w) and assuming no
integer overflow, consider a data stream with n keys, labeled
1, 2, ..., n. Let Qi be the true Qweight of the ith key, and Q′

i

its estimated value. The following conclusions can be drawn:

Unbiasedness: E(Q′
i) = Qi

Error bound with relative error ε and failure probability γ:

Pr [|Q′
i −Qi| � εL2] � γ (1)

where w = 
4ε−2�, d = 
8ln(γ−1)�, L2 =
√∑n

i=1 Q
2
i .

Proof. For each array t, every key i has a signed value St(i)
which is randomly 1 or -1. Let Q∗

i denote the estimated value

of Qi in array t. The expectation in array t is unbiased:

E(Q∗
i ) = E

(
Qi +

∑
j �=i(QjSt(i)St(j)Xj

)
= Qi, where

Xj =

{
1 iff ht(i) = ht(j),
0 otherwise.

indicates the collision. The

error in Q′
i is symmetric due to the symmetry of St(j). By

taking the median of the estimates across t rows, we can

still ensure that the estimated quantity is unbiased. That is,

E(Q′
i) = Qi.

We can calculate the variance as follows:

V ar(Q∗
i ) = V ar

⎛⎝Qi +
∑
j �=i

QjSt(i)St(j)Xj

⎞⎠
�

∑
j �=i

[
E((QjSt(i)St(j)Xj)

2)− E(QjSt(i)St(j)Xj)
2
]

=
1

w

∑
j �=i

Q2
j � 1

w
L2
2,where L2 =

√√√√ n∑
i=1

Q2
i

With Chebyshev’s inequality, we have

Pr [|Q∗
i −Qi| � εL2] � 1

wε2

By using the Chernoff bound, and choosing w = 
4ε−2�
and d = 
8 ln(γ−1)�, we obtain:

Pr [|Q′
i −Qi| � εL2] � γ

Theorem 2. With the absolute value of Qweight follow a Zipf
distribution with parameter α, after removing the top k keys
with the highest Qweight from the vague part, the error bound
generated by Theorem 1 will be reduced by a factor of 1

kα−0.5 ,
i.e., replacing L2 with L2

kα−0.5 .

Proof. In a Zipf distribution, the k-th largest key in

Qweight 1
kα∗ζ(α) probability of occurrence. So, we can es-

timate that: Q2
k ≈

(
1

kα∗ζ(α)
)2

(L2)
2

and
∑n

i=1(Q
2
i ) ≈∑n

i=1(i
−2α) 1

ζ(α)2 (L2)
2

After filtering out top-k keys, we have∑n
i=k+1(Q

2
i ) ≈ ∑n

i=k+1(i
−2α) 1

ζ(α)2 (L2)
2
. Thus,

∑n
i=k+1(Q

2
i )∑n

i=1(Q
2
i )

≈
∑n

i=k+1(i
−2α)∑n

i=1(i
−2α) � 1

k2α−1 .

Since keys in the candidate part do not affect the vague part,

if we can use the candidate part to pick out the ideal keys,

Theorem 2 tells us that this could potentially reduce the error

of the vague part by a significant multiple. Since we consider

the probability of fingerprint collision to be very small, it is

not considered here.

Theorem 3. For a key i in the candidate part with estimation
Q′

i, suppose that the last time it enters into the candidate part
is T. We use QT

k to represent the real Qweight of key k at time
T. mT

k indicates whether key k has ever entered the vague part
before time T, with mT

k = 1 representing ’yes’, and otherwise
mT

k = 0. The L2 in Formula 2 can be replaced with much

smaller
√∑n

i=1(m
T
i (Q

T
i )

2):

Pr

⎡⎣|Q′
i −Qi| � ε

√√√√ n∑
i=1

(mT
i (Q

T
i )

2)

⎤⎦ � γ (2)

We analyze the time and space complexity of QuantileFilter.

Since the conclusion of Theorem 3 is dependent on dataset

characteristics, in the most conservative case, we can only

estimate the complexity based on Theorem 1.
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In terms of time, processing each item involves at most one

visit to the candidate part and two visits to the vague part, so

the time complexity per item is O(b+d), where b is the bucket

size of the candidate part, and d is the number of arrays in

the vague part. To achieve error control under (ε and γ), the

time complexity is O(log(γ−2)).
In terms of space, we can maintain the candidate part’s size

as a constant multiple of the vague part, hence directly analyze

the space of the vague part, which is O(w × d), where w is

the width of each array. Therefore, the space complexity is

O(ε−2 log(γ−1)).

V. EVALUATION

In this section, we present the experiment results of

QuantileFilter, which include four main sections: (1) Experi-

ment setup and methods. (2) Accuracy-Space comparison of

QuantileFilter with state-of-the-art (SOTA) schemes, including

SQUAD, SketchPolymer, and HistSketch. (3) Speed compari-

son of QuantileFilter with SOTA. (4) More detailed experiment

results of QuantileFilter, including the effects of adjusting its

parameters and design. The codes for QuantileFilter are open-

sourced on Github [51].

We have two key results:

1) Speed. For the same volume of data in real datasets

and with an accuracy above 50%, the processing speed

(insertion + querying) of QuantileFilter for each item has

improved by 10 to 100 times compared to SOTA schemes.

2) Space. QuantileFilter saves 50 to 500 times more space

than SOTA schemes at the same level of accuracy, appli-

cable across all accuracy ranges from 0 to 100%.

A. Experiment Setup and Methods

Datasets. We use two large-scale real datasets and one syn-

thetic dataset, which are respectively the internet network data

from CAIDA, cloud network data from Yahoo, and a synthetic

dataset following a Zipf distribution.

1) Internet dataset. Derived from CAIDA’s anonymized

high-speed internet traffic data [52], this dataset uses

a five-tuple key (source/destination IP addresses, port

numbers, protocol numbers) with time intervals as values.

It consists of a 23-second stream containing 26.1M items

and approximately 0.64M unique keys.

2) Cloud dataset: From Yahoo stream data [53], capturing

patterns between Internet users and Yahoo servers on

AWS. Each item includes start/end times, source/desti-

nation IPs, ports, protocol, using a five-tuple as the key

and time duration as value, excluding content. The dataset

encompasses 20.5M items with 16.9M unique keys.

3) Zipf dataset. A synthetic dataset modeled on the Zipf

distribution, with item occurrence frequencies following

Zipf’s law with parameter α. Each value is derived by

summing two components: one that adheres to a fixed-

parameter Zipf distribution, and another that is constant

given a key and varies with the key according to a normal

distribution with fixed mean and standard deviation. Ad-

justing α varies key distributions, resulting in two datasets

of 25M items each, with distinct key counts of 4.2M and

120K.

Platform and Implementation. All our experiments were

carried out on a server featuring an Intel CPU i9-10980XE (18

cores, 36 threads, 3.00 GHz, 64KB L1 cache per core, 1MB

L2 cache per core, 24.75MB L3 cache shared by all cores)

and 128GB of DRAM. The implementation of QuantileFilter

was done in C++, and the SOTA code was obtained from

their public repositories. The executable files were compiled

with the O2 optimization setting activated. Based on the

analysis in Section V-D, the default parameters selected

for QuantileFilter are: a maximum of b=6 entries in the

candidate part’s bucket, and d=3 arrays in the vague part.

The storage space allocation between the candidate part and

the vague part is 4:1. The parameters for SOTA are derived

from the recommendations in their papers. The default quantile

parameters are set as ε = 30, δ = 95%. The threshold (T) is

300ms adjusted to ensure the proportion of abnormal items is

around 5%. Specifically, T = 300ms for the Internet dataset,

20s for the Cloud dataset, and 300ms for the Zipf dataset.

B. Experiments on Accuracy-Space

In this section, we compare our solution’s space and ac-

curacy performance against existing SOTA algorithms, high-

lighting our superior efficiency.

Metrics: We measure algorithm accuracy by streaming the

entire dataset into each algorithm, which in real-time reports

the outstanding keys. After the insertion process is complete,

these keys are deduplicated and compared with the actual set

of outstanding keys. A True Positive (TP) is a reported key

correctly identified as outstanding, while a False Positive (FP)

is a key incorrectly identified as outstanding. The following

three metrics are defined:

• Precision = TP
TP+FP , indicating the accuracy of positive

predictions.

• Recall = TP
TP+FN , reflecting the ability to find all outstand-

ing keys.

• F1 score = 2·Precision·Recall
Precision+Recall

, providing a balanced measure

of both Precision and Recall.

They are the most basic test metrics, not yet including any

constraints on reporting timeliness. However, even for this

simple accuracy goal, the overhead of SOTA is far greater

than ours.

Key results. Overall, QuantileFilter achieves a significant

reduction in storage requirements, saving between 50 to 500

times more space than the SOTA algorithms at equivalent

levels of accuracy. Furthermore, under constrained space con-

ditions, such as when limited to 1MB, our solution attains an

F1 accuracy of 99.77%, markedly surpassing the SOTA’s F1

accuracy which falls below 25%.

As shown in Fig. 4, and 5, excluding our proposed method,

SQUAD generally performs the best in most scenarios, with

its metrics converging towards 100% as space limitations

increase. HistSketch incorporates various data structures in

its design, which allows for unbounded and unpredictable
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(a) F1 score on Internet dataset. (b) Precision on Internet dataset. (c) Recall on Internet dataset (d) F1 score on Cloud dataset

Fig. 4: Comparison of accuracy.

Fig. 5: Comparison of accuracy on Zipf dataset.

(a) Zipf 1 dataset. (b) Zipf 2 dataset.

Fig. 6: Accuracy under different values of T.

space usage. Particularly in the Cloud dataset, characterized

by its extensive number of keys, HistSketch typically demands

around 1GB of space, irrespective of the parameter configu-

rations. SketchPolymer demonstrates reasonable performance

within certain space limitations (approximately 223 bytes on

the Internet). However, due to its design principle of discarding

the earliest arriving values for each unique key, SketchPoly-

mer is prone to inherent systematic recall errors, hindering

accuracy improvements even with ample space. Additionally,

when its space consumption drops below a certain threshold,

SketchPolymer becomes inefficient, broadly misidentifying

keys as outliers, which leads to very low precision but high

recall.

Our algorithm, however, maintains a consistently high level

of precision irrespective of the space constraints, with recall

improving as more space becomes available and eventually

converging to 100%. This indicates that our algorithm pos-

sesses a degree of unilaterality, making it particularly suitable

for scenarios where stringent requirements are placed on

reducing false positives. QuantileFilter efficiently utilizes

our 1MB L2 cache even with minimal space occupation. In

practical tests, when its space usage was 0.24, 0.47, 0.93,

(a) 80%. (b) 99%.

Fig. 7: Accuracy v.s. Quantile Parameter δ.

and 1.88MB, the hit rates achieved were 97%, 80%, 56%,

and 40%, respectively. This demonstrates the value of its

efficient memory usage. In Internet and cloud datasets, T is

set to 300ms and 20s respectively, resulting in anomaly item

proportions of 7.6% and 4.6%, respectively.

Effects of T . Fig. 6 shows that within the broad range of 1ms

to 500ms for Internet Data and 1ms to 4096ms for Cloud,

we can maintain accuracy relatively stable across various

memory settings, demonstrating our ability to meet diverse T

requirements set by users. The specific T value is determined

based on the users’ objectives. The resilience of T can be

attributed to the implementation of the vague part in our

algorithm, where a random +1/-1 coefficient is assigned for

each key. This design ensures that changes in the proportion

of abnormal items do not substantially alter the counter state

in our solution.

Effects of quantile δ. In Fig. 7, altering the queried quantile

δ does not significantly diminish QuantileFilter’s advantages.

When the percentage is increased, it implies that the same

key is more readily identified as an anomaly. This adjustment

to some extent mitigates the issue of lower recall in Sketch-

Polymer, but it cannot bridge the substantial performance gap

between it and our approach.

C. Experiments on Speed

Metrics. We use throughput to evaluation the speed, in

million operations per second (MOPS).

Key results. Overall, when accuracy exceeds 50%, our al-

gorithm achieves a speed enhancement of 10 to 100 times

compared to SOTA.

A significant advantage of QuantileFilter is its inherent

capability for real-time monitoring. Unlike SOTA, which re-
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(a) Overall on Internet dataset. (b) Insertion on Internet dataset. (c) Query on Internet dataset. (d) Overall on Cloud dataset.

Fig. 8: Comparison of throughput.

(a) Sketch number on Internet dataset. (b) Block length on Internet dataset.

Fig. 9: Accuracy on different parameter settings.

(a) Sketch number on Internet dataset. (b) Block length on Internet dataset.

Fig. 10: Throughput on different parameter settings.

quires explicit querying after each item insertion, our approach

eliminates this need. In fact, even if we only consider a part

of SOTA’s insertion and querying process, QuantileFilter still

exhibits superior performance. For instance, on the Internet

dataset, when our solution attains a 50% F1 Score, its speed

reaches 15.76 MOPS, while SOTA’s query and insert opera-

tions only manage 3.30 MOPS each at the same F1 Score,

totaling just 1.65 MOPS.

Additionally, our approach employs a strategy of initially

querying the candidate part followed by the vague part,

enhancing the hit rate of the candidate part when memory

limitations are expanded. This avoids repetitive querying of the

vague part, thereby further accelerating our solution’s speed as

space increases and precision improves. Conversely, SOTA’s

time for querying sharply rises with the expansion of space

and improved accuracy, dropping to just 0.22 MOPS at a 96%

F1 Score. This is 77.0 times slower than our algorithm at

comparable levels of accuracy. The performance gap widens

further as it approaches a 100% F1 Score. As illustrated in

Fig. 8(d), this advantage is consistently sustained in a more

stable manner on the Cloud dataset.

D. In-Depth Exploration of QuantileFilter

In this section, we present the impact of various algorithmic

parameters and versions on QuantileFilter.

Effects of Array Number d (Fig. 9(a) & 10(a)): This

parameter signifies the number of different hash functions in

the vague part, and it also represents the number of items

that need to be traversed during each query of the vague part.

After enumerating this parameter from 1 to 20 and conducting

corresponding tests, we discovered that it has a negligible

impact on accuracy while exerting a certain influence on

throughput. Considering that the median’s characteristics are

more advantageous when the sketch number is odd, thereby

being less prone to disruption by extreme data, we selected 3

for its higher throughput.

Effects of Block Length (Fig. 9(b) & 10(b)): This parameter

defines the maximum number of items each bucket in the

candidate part can hold, and it is also the number of items

that need to be traversed during each query of the candidate

part. As shown in the figure, after exploring different values

for this parameter, we found its behavior to be quite similar

to that of the Sketch number, having only a minor impact on

accuracy. Considering the potential memory waste associated

with too small a block length, and its limited contribution

to throughput enhancement, we therefore opted for the more

prudent value of 6.

(a) Internet dataset. (b) Cloud dataset.

Fig. 11: F1 score on different memory proportion.

Effects of Memory Proportion (Fig. 11): This parameter

indicates the ratio of available space allocated to the vague and

candidate parts of the data structure. The results show that the

impact of memory ratio allocation is relatively minor when the

differences on both sides are not significant. However, extreme

allocations can lead to considerable fluctuations in accuracy.

Therefore, for a more cautious approach, we chose the more
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(a) F1 score on Internet dataset. (b) F1 score on Yahoo.

Fig. 12: F1 score on different variants of QuantileFilter.

stable ratio of 1:4, where the vague approximately occupies

20% of the total space, and the candidate about 80%.

Effects of Algorithm Variants (Fig. 12): We explore three

candidate election strategies (Comparative, Probabilistic, and

Forceful) and two vague part types (CMS and Csketch (CS)),

resulting in six distinct variants. Experimental results show

that versions using CS perform better and are less affected

by the candidate election strategies. For versions using CMS,

effectiveness decreases in the order of Comparative, Prob-

abilistic, and Forceful strategies. The throughput of the six

variants—Force+CMS, Comp.+CMS, Prob.+CMS, Force+CS,

Comp.+CS, and Prob.+CS–at a space of 245KB are 25.1,

24.3, 23.4, 18.9, 17.3, and 17.2 MOPS, respectively, showing

minimal differences. Consequently, we select the Larger+CS

combination, which demonstrates the highest accuracy. We

also include SQUAD as a benchmark, but in figure 12(b),

SQUAD, consuming about 30MB of memory, does not appear

in the figure.

Effects of Dynamic Modification of Criteria. We modify

the criteria parameters ε, δ, and T one at a time. For a

chosen parameter, we modify it for half the keys, then compare

the accuracy of modified and unmodified keys against the

baseline scenario without modifications. The choice and timing

of modifications are randomized to minimize strategy bias.

We continue using F1 score and throughput as our accuracy

and speed metrics. We utilized the Internet dataset. When the

space is set to 128MB, introducing these modifications reduces

QuantileFilter’s throughput from 16MOPS to approximately

13MOPS, regardless of whether the modifications are to ε, δ,

or T . Below are the specific impacts of the modifications on

accuracy. Modifying ε (Fig. 13): For modified keys, making

ε larger increases accuracy because labeling these keys as

outliers becomes more challenging, and the algorithm’s error

has less impact on them. For the remaining unmodified keys,

their accuracy is largely unaffected since changing ε does not

influence the modification method of Qweight during insertion.

When modifying δ (Fig. 14): For modified keys, making δ
smaller increases the error, as our algorithm is better suited for

deltas close to 100%. Thus, the smaller the δ, the greater the

error. For unmodified keys, a smaller δ means that the number

added during the Qweight update of modified keys is smaller,

thereby reducing the error for unmodified keys.

When modifying T (Fig. 15): For modified keys, making

T smaller increases the error, because decreasing T leads to

more abnormal quantiles, making detection more challenging.

Therefore, the smaller the T , the greater the error. For un-

modified keys, the smaller T is, the larger the number added

during the Qweight update of modified keys, thus increasing

the error for unmodified keys.

(a) Modified keys (b) Unmodified keys

Fig. 13: The effects of modifying ε.

(a) Modified keys (b) Unmodified keys

Fig. 14: The effects of modifying δ.

(a) Modified keys (b) Unmodified keys

Fig. 15: The effects of modifying T .

VI. CONCLUSION

While recent advances in quantile estimation for key-value

streams have improved flexibility, they lag in query speed

compared to the rapid data insertion. Our study introduces

QuantileFilter, a novel algorithm designed for real-time detec-

tion of keys with quantiles above a threshold, crucial for spot-

ting anomalies in streaming data. QuantileFilter significantly

outperforms SOTA, offering 10 to 100 times faster processing

and requiring 50 to 500 times less storage space, all while

maintaining accuracy.
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